| L(s) = 1 | + 2.58i·2-s − 6.65i·3-s + 1.31·4-s + 17.2·6-s − 7i·7-s + 24.0i·8-s − 17.3·9-s + 38.2·11-s − 8.74i·12-s − 19.3i·13-s + 18.1·14-s − 51.7·16-s − 87.2i·17-s − 44.7i·18-s + 44.2·19-s + ⋯ |
| L(s) = 1 | + 0.914i·2-s − 1.28i·3-s + 0.164·4-s + 1.17·6-s − 0.377i·7-s + 1.06i·8-s − 0.641·9-s + 1.04·11-s − 0.210i·12-s − 0.412i·13-s + 0.345·14-s − 0.808·16-s − 1.24i·17-s − 0.586i·18-s + 0.534·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.96631 - 0.464183i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.96631 - 0.464183i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 + 7iT \) |
| good | 2 | \( 1 - 2.58iT - 8T^{2} \) |
| 3 | \( 1 + 6.65iT - 27T^{2} \) |
| 11 | \( 1 - 38.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + 19.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 87.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 44.2T + 6.85e3T^{2} \) |
| 23 | \( 1 + 218. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 46.9T + 2.43e4T^{2} \) |
| 31 | \( 1 - 194.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 366. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 339.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 226. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 11.6iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 209. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 616T + 2.05e5T^{2} \) |
| 61 | \( 1 - 320.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 14.5iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 952T + 3.57e5T^{2} \) |
| 73 | \( 1 + 824. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 156.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.03e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 170.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.05e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.10399213872292715096570306755, −11.59700987177039495360289214855, −10.15404941878339276654717952647, −8.624255205988623097960181033632, −7.77298554987503961263365679156, −6.77644020452773905440791942022, −6.40188160329373191011090938787, −4.82352917790929012541746536107, −2.67352045577803876477612793986, −1.03237242944832544739333277365,
1.64671238278383611027339063637, 3.40688579798447119643912695672, 4.13944779435838243460918755144, 5.68141460145288017547113342330, 7.02987950355812412862414971156, 8.758874945010871124384702912915, 9.664806314256019606592320395801, 10.28463169139887517179348182900, 11.38732023366106231059617142126, 11.88224123264825821749954534786