Properties

Label 2-175-5.4-c1-0-2
Degree $2$
Conductor $175$
Sign $0.447 - 0.894i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.618i·2-s + 3.23i·3-s + 1.61·4-s + 2.00·6-s + i·7-s − 2.23i·8-s − 7.47·9-s − 0.236·11-s + 5.23i·12-s − 1.23i·13-s + 0.618·14-s + 1.85·16-s + 2.47i·17-s + 4.61i·18-s + 4.47·19-s + ⋯
L(s)  = 1  − 0.437i·2-s + 1.86i·3-s + 0.809·4-s + 0.816·6-s + 0.377i·7-s − 0.790i·8-s − 2.49·9-s − 0.0711·11-s + 1.51i·12-s − 0.342i·13-s + 0.165·14-s + 0.463·16-s + 0.599i·17-s + 1.08i·18-s + 1.02·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.12420 + 0.694799i\)
\(L(\frac12)\) \(\approx\) \(1.12420 + 0.694799i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - iT \)
good2 \( 1 + 0.618iT - 2T^{2} \)
3 \( 1 - 3.23iT - 3T^{2} \)
11 \( 1 + 0.236T + 11T^{2} \)
13 \( 1 + 1.23iT - 13T^{2} \)
17 \( 1 - 2.47iT - 17T^{2} \)
19 \( 1 - 4.47T + 19T^{2} \)
23 \( 1 + 6.23iT - 23T^{2} \)
29 \( 1 + 5T + 29T^{2} \)
31 \( 1 - 3.70T + 31T^{2} \)
37 \( 1 - 3iT - 37T^{2} \)
41 \( 1 - 4.76T + 41T^{2} \)
43 \( 1 + 1.76iT - 43T^{2} \)
47 \( 1 + 2iT - 47T^{2} \)
53 \( 1 + 8.47iT - 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 + 9.70T + 61T^{2} \)
67 \( 1 + 4.23iT - 67T^{2} \)
71 \( 1 - 8.70T + 71T^{2} \)
73 \( 1 - 8.76iT - 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 - 7.70iT - 83T^{2} \)
89 \( 1 + 17.2T + 89T^{2} \)
97 \( 1 - 5.23iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55833065602628834637162321434, −11.56113045395214947258880427252, −10.79593599637896004221013706162, −10.09210118858198878118867805189, −9.239963138238579781149581618329, −8.034504885805943084032925875292, −6.26153516813921453805768160005, −5.15070445306339661512659339848, −3.81330912581320927380422688031, −2.74178463747098740592672550607, 1.50130932388954037066814843703, 2.91604845681651398242151560133, 5.52387613024741033761109869961, 6.44995959987103703939611212264, 7.49034919657888033225995783149, 7.71158487448636740813452156872, 9.239063482082763984352873592714, 11.02700299587211175821092304886, 11.71273539737924117164867568784, 12.49011642332914920914563429016

Graph of the $Z$-function along the critical line