Properties

Label 2-175-35.34-c0-0-0
Degree $2$
Conductor $175$
Sign $0.447 - 0.894i$
Analytic cond. $0.0873363$
Root an. cond. $0.295527$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s i·7-s + i·8-s − 9-s − 11-s + 14-s − 16-s i·18-s i·22-s i·23-s + 29-s + i·37-s i·43-s + 46-s − 49-s + ⋯
L(s)  = 1  + i·2-s i·7-s + i·8-s − 9-s − 11-s + 14-s − 16-s i·18-s i·22-s i·23-s + 29-s + i·37-s i·43-s + 46-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(0.0873363\)
Root analytic conductor: \(0.295527\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (174, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :0),\ 0.447 - 0.894i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6816688592\)
\(L(\frac12)\) \(\approx\) \(0.6816688592\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + iT \)
good2 \( 1 - iT - T^{2} \)
3 \( 1 + T^{2} \)
11 \( 1 + T + T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + iT - T^{2} \)
29 \( 1 - T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - iT - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + iT - T^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 - 2iT - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - iT - T^{2} \)
71 \( 1 + T + T^{2} \)
73 \( 1 + T^{2} \)
79 \( 1 - T + T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51079718904401974351850817746, −12.14444489939289199289128893931, −11.01720550911740402855652502622, −10.29555842557836072172498395314, −8.660735445337753490462854231169, −7.892558870453853779324276599677, −6.90392282848403870644246039249, −5.86088782635053946864062341182, −4.70197917174654042535704225276, −2.78551367007755798973085985436, 2.28332171512070147804322165723, 3.27454930028603520033152893804, 5.16453359959286448991575163680, 6.28445743743243721438375152643, 7.82270203266143885773618920167, 8.948939647607505608978697134519, 9.967080819986157002800541397073, 11.03055908768080276870833170769, 11.70372483322166441461992033855, 12.53910350627727582540120298789

Graph of the $Z$-function along the critical line