Properties

Label 2-175-175.47-c1-0-17
Degree $2$
Conductor $175$
Sign $-0.966 + 0.256i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.112 − 2.15i)2-s + (1.03 − 0.839i)3-s + (−2.63 − 0.277i)4-s + (−1.72 − 1.42i)5-s + (−1.69 − 2.32i)6-s + (−2.35 + 1.19i)7-s + (−0.220 + 1.39i)8-s + (−0.253 + 1.19i)9-s + (−3.26 + 3.54i)10-s + (4.15 − 0.882i)11-s + (−2.96 + 1.92i)12-s + (2.42 − 4.75i)13-s + (2.31 + 5.21i)14-s + (−2.98 − 0.0321i)15-s + (−2.21 − 0.470i)16-s + (4.69 − 1.80i)17-s + ⋯
L(s)  = 1  + (0.0798 − 1.52i)2-s + (0.598 − 0.484i)3-s + (−1.31 − 0.138i)4-s + (−0.770 − 0.637i)5-s + (−0.690 − 0.950i)6-s + (−0.891 + 0.453i)7-s + (−0.0780 + 0.492i)8-s + (−0.0846 + 0.398i)9-s + (−1.03 + 1.12i)10-s + (1.25 − 0.266i)11-s + (−0.856 + 0.556i)12-s + (0.671 − 1.31i)13-s + (0.619 + 1.39i)14-s + (−0.769 − 0.00828i)15-s + (−0.553 − 0.117i)16-s + (1.13 − 0.437i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 + 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.966 + 0.256i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ -0.966 + 0.256i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.154266 - 1.18419i\)
\(L(\frac12)\) \(\approx\) \(0.154266 - 1.18419i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.72 + 1.42i)T \)
7 \( 1 + (2.35 - 1.19i)T \)
good2 \( 1 + (-0.112 + 2.15i)T + (-1.98 - 0.209i)T^{2} \)
3 \( 1 + (-1.03 + 0.839i)T + (0.623 - 2.93i)T^{2} \)
11 \( 1 + (-4.15 + 0.882i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (-2.42 + 4.75i)T + (-7.64 - 10.5i)T^{2} \)
17 \( 1 + (-4.69 + 1.80i)T + (12.6 - 11.3i)T^{2} \)
19 \( 1 + (-0.174 - 1.66i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-1.59 - 0.0835i)T + (22.8 + 2.40i)T^{2} \)
29 \( 1 + (4.43 - 6.10i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (-0.987 + 2.21i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (1.89 + 2.92i)T + (-15.0 + 33.8i)T^{2} \)
41 \( 1 + (-3.63 + 1.18i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (4.20 - 4.20i)T - 43iT^{2} \)
47 \( 1 + (-3.17 + 8.27i)T + (-34.9 - 31.4i)T^{2} \)
53 \( 1 + (-2.88 - 3.56i)T + (-11.0 + 51.8i)T^{2} \)
59 \( 1 + (4.69 - 5.21i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (8.51 - 7.66i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (-3.28 - 8.56i)T + (-49.7 + 44.8i)T^{2} \)
71 \( 1 + (-11.8 - 8.63i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (2.58 + 1.67i)T + (29.6 + 66.6i)T^{2} \)
79 \( 1 + (3.71 + 8.33i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (0.313 + 0.0496i)T + (78.9 + 25.6i)T^{2} \)
89 \( 1 + (3.99 + 4.43i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (4.27 - 0.676i)T + (92.2 - 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.33514161313440747300450100796, −11.49026864187711518237651145292, −10.42848474358320151605014335420, −9.255816237574337720839495955427, −8.550096536746381053188776873604, −7.30543176695276189734744320771, −5.51432523123947159618155110587, −3.75614779281628543462862715626, −3.01926342323173275096561636690, −1.18474261205631785691260234782, 3.53198554685277714727366189661, 4.25959772982842677474446230618, 6.30062453637559821722558751408, 6.74819445781092836773698271701, 7.86259813115828581830674198368, 8.997551027513211052006333306087, 9.675151201175400591700848583801, 11.20283808733927587071333961305, 12.27057949564615520180106853865, 13.86421051092961283516828082522

Graph of the $Z$-function along the critical line