Properties

Label 2-175-175.47-c1-0-1
Degree $2$
Conductor $175$
Sign $-0.888 + 0.459i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0571 + 1.09i)2-s + (−2.14 + 1.73i)3-s + (0.801 + 0.0842i)4-s + (−1.85 − 1.24i)5-s + (−1.76 − 2.43i)6-s + (−2.33 + 1.24i)7-s + (−0.479 + 3.02i)8-s + (0.954 − 4.48i)9-s + (1.46 − 1.95i)10-s + (−2.33 + 0.496i)11-s + (−1.86 + 1.20i)12-s + (1.87 − 3.67i)13-s + (−1.22 − 2.61i)14-s + (6.13 − 0.545i)15-s + (−1.70 − 0.361i)16-s + (−4.38 + 1.68i)17-s + ⋯
L(s)  = 1  + (−0.0404 + 0.771i)2-s + (−1.23 + 1.00i)3-s + (0.400 + 0.0421i)4-s + (−0.829 − 0.557i)5-s + (−0.722 − 0.994i)6-s + (−0.882 + 0.470i)7-s + (−0.169 + 1.07i)8-s + (0.318 − 1.49i)9-s + (0.464 − 0.617i)10-s + (−0.703 + 0.149i)11-s + (−0.537 + 0.349i)12-s + (0.518 − 1.01i)13-s + (−0.327 − 0.699i)14-s + (1.58 − 0.140i)15-s + (−0.425 − 0.0903i)16-s + (−1.06 + 0.407i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.888 + 0.459i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.888 + 0.459i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.888 + 0.459i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ -0.888 + 0.459i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0982173 - 0.403526i\)
\(L(\frac12)\) \(\approx\) \(0.0982173 - 0.403526i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.85 + 1.24i)T \)
7 \( 1 + (2.33 - 1.24i)T \)
good2 \( 1 + (0.0571 - 1.09i)T + (-1.98 - 0.209i)T^{2} \)
3 \( 1 + (2.14 - 1.73i)T + (0.623 - 2.93i)T^{2} \)
11 \( 1 + (2.33 - 0.496i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (-1.87 + 3.67i)T + (-7.64 - 10.5i)T^{2} \)
17 \( 1 + (4.38 - 1.68i)T + (12.6 - 11.3i)T^{2} \)
19 \( 1 + (-0.387 - 3.68i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-3.37 - 0.176i)T + (22.8 + 2.40i)T^{2} \)
29 \( 1 + (4.02 - 5.54i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (3.81 - 8.56i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (-1.82 - 2.80i)T + (-15.0 + 33.8i)T^{2} \)
41 \( 1 + (-4.39 + 1.42i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (-3.92 + 3.92i)T - 43iT^{2} \)
47 \( 1 + (2.93 - 7.63i)T + (-34.9 - 31.4i)T^{2} \)
53 \( 1 + (3.29 + 4.06i)T + (-11.0 + 51.8i)T^{2} \)
59 \( 1 + (-3.33 + 3.70i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (-2.25 + 2.03i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (4.08 + 10.6i)T + (-49.7 + 44.8i)T^{2} \)
71 \( 1 + (2.61 + 1.90i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-12.8 - 8.31i)T + (29.6 + 66.6i)T^{2} \)
79 \( 1 + (-0.754 - 1.69i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (-4.83 - 0.765i)T + (78.9 + 25.6i)T^{2} \)
89 \( 1 + (2.32 + 2.58i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (3.70 - 0.586i)T + (92.2 - 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87589450299509813211134946541, −12.29405243040200108657014622101, −11.06191878840843384195936115172, −10.65976270689199704754872567788, −9.202414738241946538357483792680, −8.115707903086363583783998895266, −6.80995754270820579648886892789, −5.72526107573897561843174602107, −5.03083547434985282559900670783, −3.44448395747090503392528282363, 0.42178289772861220174247427385, 2.49316241634651329586149825606, 4.11409978697395123688638795791, 6.07867708680543518017610470438, 6.87524117547548450620725025785, 7.47291505677687849216028099689, 9.427454073454106832812164951021, 10.86396355907463046165956235620, 11.17815228163579700543236484158, 11.85521432194875878739468603608

Graph of the $Z$-function along the critical line