Properties

Label 2-175-175.156-c1-0-17
Degree $2$
Conductor $175$
Sign $-0.511 + 0.859i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.730 + 0.155i)2-s + (−1.46 − 0.652i)3-s + (−1.31 − 0.586i)4-s + (0.802 − 2.08i)5-s + (−0.969 − 0.704i)6-s + (−2.45 + 0.993i)7-s + (−2.08 − 1.51i)8-s + (−0.284 − 0.315i)9-s + (0.910 − 1.40i)10-s + (−0.284 + 0.315i)11-s + (1.54 + 1.71i)12-s + (1.29 − 3.99i)13-s + (−1.94 + 0.344i)14-s + (−2.53 + 2.53i)15-s + (0.644 + 0.715i)16-s + (−0.114 + 1.08i)17-s + ⋯
L(s)  = 1  + (0.516 + 0.109i)2-s + (−0.846 − 0.376i)3-s + (−0.658 − 0.293i)4-s + (0.358 − 0.933i)5-s + (−0.395 − 0.287i)6-s + (−0.926 + 0.375i)7-s + (−0.735 − 0.534i)8-s + (−0.0947 − 0.105i)9-s + (0.288 − 0.442i)10-s + (−0.0857 + 0.0952i)11-s + (0.446 + 0.496i)12-s + (0.360 − 1.10i)13-s + (−0.520 + 0.0921i)14-s + (−0.655 + 0.654i)15-s + (0.161 + 0.178i)16-s + (−0.0277 + 0.264i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.511 + 0.859i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.511 + 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.511 + 0.859i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (156, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ -0.511 + 0.859i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.362829 - 0.638625i\)
\(L(\frac12)\) \(\approx\) \(0.362829 - 0.638625i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.802 + 2.08i)T \)
7 \( 1 + (2.45 - 0.993i)T \)
good2 \( 1 + (-0.730 - 0.155i)T + (1.82 + 0.813i)T^{2} \)
3 \( 1 + (1.46 + 0.652i)T + (2.00 + 2.22i)T^{2} \)
11 \( 1 + (0.284 - 0.315i)T + (-1.14 - 10.9i)T^{2} \)
13 \( 1 + (-1.29 + 3.99i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (0.114 - 1.08i)T + (-16.6 - 3.53i)T^{2} \)
19 \( 1 + (-7.39 + 3.29i)T + (12.7 - 14.1i)T^{2} \)
23 \( 1 + (2.87 + 0.610i)T + (21.0 + 9.35i)T^{2} \)
29 \( 1 + (-1.38 + 1.00i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (0.665 - 6.32i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (-2.06 - 2.29i)T + (-3.86 + 36.7i)T^{2} \)
41 \( 1 + (-3.40 + 10.4i)T + (-33.1 - 24.0i)T^{2} \)
43 \( 1 + 9.12T + 43T^{2} \)
47 \( 1 + (1.09 + 10.4i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (-0.294 - 0.131i)T + (35.4 + 39.3i)T^{2} \)
59 \( 1 + (-7.03 + 1.49i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (1.41 + 0.301i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (-1.02 + 9.76i)T + (-65.5 - 13.9i)T^{2} \)
71 \( 1 + (-6.56 + 4.76i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (5.37 - 5.97i)T + (-7.63 - 72.6i)T^{2} \)
79 \( 1 + (-1.29 - 12.3i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-2.81 - 2.04i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 + (2.78 + 0.591i)T + (81.3 + 36.1i)T^{2} \)
97 \( 1 + (-5.06 + 3.67i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.50907600789062235953188972696, −11.86394831547964054731492679643, −10.27666504357968840834245255817, −9.398820952767693908012268389828, −8.469115967517642421079723535274, −6.69340720207206062146716533704, −5.62511012590711046966477215708, −5.19897481100132432891156809520, −3.43100371486225664944793069788, −0.65472839181342999879916847129, 3.03923797834126251638494176788, 4.20197926848244787027319244326, 5.58597981110548356336024280362, 6.38491411736507592277351270849, 7.76613159067916080879059601720, 9.435993091702132276434971472968, 10.02108343143169258999829782693, 11.30950221799563008659869251030, 11.87333044058168365897850330860, 13.23238139847612602413290358818

Graph of the $Z$-function along the critical line