Properties

Label 2-175-175.108-c1-0-2
Degree $2$
Conductor $175$
Sign $-0.900 - 0.434i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.126 + 2.41i)2-s + (0.433 + 0.351i)3-s + (−3.81 + 0.400i)4-s + (1.33 + 1.79i)5-s + (−0.792 + 1.09i)6-s + (2.23 + 1.40i)7-s + (−0.693 − 4.37i)8-s + (−0.558 − 2.62i)9-s + (−4.15 + 3.45i)10-s + (−1.43 − 0.303i)11-s + (−1.79 − 1.16i)12-s + (−2.47 − 4.84i)13-s + (−3.11 + 5.57i)14-s + (−0.0481 + 1.24i)15-s + (2.97 − 0.631i)16-s + (0.526 + 0.202i)17-s + ⋯
L(s)  = 1  + (0.0893 + 1.70i)2-s + (0.250 + 0.202i)3-s + (−1.90 + 0.200i)4-s + (0.598 + 0.800i)5-s + (−0.323 + 0.445i)6-s + (0.846 + 0.532i)7-s + (−0.245 − 1.54i)8-s + (−0.186 − 0.876i)9-s + (−1.31 + 1.09i)10-s + (−0.431 − 0.0916i)11-s + (−0.518 − 0.336i)12-s + (−0.685 − 1.34i)13-s + (−0.832 + 1.49i)14-s + (−0.0124 + 0.322i)15-s + (0.742 − 0.157i)16-s + (0.127 + 0.0490i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.434i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.900 - 0.434i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (108, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ -0.900 - 0.434i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.292899 + 1.28197i\)
\(L(\frac12)\) \(\approx\) \(0.292899 + 1.28197i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-1.33 - 1.79i)T \)
7 \( 1 + (-2.23 - 1.40i)T \)
good2 \( 1 + (-0.126 - 2.41i)T + (-1.98 + 0.209i)T^{2} \)
3 \( 1 + (-0.433 - 0.351i)T + (0.623 + 2.93i)T^{2} \)
11 \( 1 + (1.43 + 0.303i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (2.47 + 4.84i)T + (-7.64 + 10.5i)T^{2} \)
17 \( 1 + (-0.526 - 0.202i)T + (12.6 + 11.3i)T^{2} \)
19 \( 1 + (0.200 - 1.90i)T + (-18.5 - 3.95i)T^{2} \)
23 \( 1 + (-9.15 + 0.479i)T + (22.8 - 2.40i)T^{2} \)
29 \( 1 + (-2.15 - 2.96i)T + (-8.96 + 27.5i)T^{2} \)
31 \( 1 + (1.68 + 3.79i)T + (-20.7 + 23.0i)T^{2} \)
37 \( 1 + (3.86 - 5.95i)T + (-15.0 - 33.8i)T^{2} \)
41 \( 1 + (-4.45 - 1.44i)T + (33.1 + 24.0i)T^{2} \)
43 \( 1 + (-0.695 - 0.695i)T + 43iT^{2} \)
47 \( 1 + (4.24 + 11.0i)T + (-34.9 + 31.4i)T^{2} \)
53 \( 1 + (1.50 - 1.85i)T + (-11.0 - 51.8i)T^{2} \)
59 \( 1 + (0.683 + 0.758i)T + (-6.16 + 58.6i)T^{2} \)
61 \( 1 + (7.98 + 7.18i)T + (6.37 + 60.6i)T^{2} \)
67 \( 1 + (-1.92 + 5.00i)T + (-49.7 - 44.8i)T^{2} \)
71 \( 1 + (3.85 - 2.80i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (5.13 - 3.33i)T + (29.6 - 66.6i)T^{2} \)
79 \( 1 + (-0.415 + 0.934i)T + (-52.8 - 58.7i)T^{2} \)
83 \( 1 + (-9.51 + 1.50i)T + (78.9 - 25.6i)T^{2} \)
89 \( 1 + (6.07 - 6.74i)T + (-9.30 - 88.5i)T^{2} \)
97 \( 1 + (7.91 + 1.25i)T + (92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56320834956305472358362045870, −12.50149426341757909536726156054, −10.99399280305124160039708927301, −9.801873481772652662543065820477, −8.776921324329001901753544901462, −7.86580897355303012306966418259, −6.86377309431833783058879168521, −5.76110129963575834867211492067, −4.99691255395158895341756379456, −3.04460725126248505659270611892, 1.47045732874209832037330303140, 2.55465640737212200365866944655, 4.48722096534193953460759848865, 5.07303132244827887463044940227, 7.32649055619318123284697270876, 8.695483237279755195539296952195, 9.412804334540320050641537658100, 10.57977139338888333115966717483, 11.22826119040100172229221960759, 12.27357296172469152882543004134

Graph of the $Z$-function along the critical line