L(s) = 1 | + (−4.55 − 0.238i)2-s + (1.16 + 1.43i)3-s + (12.7 + 1.33i)4-s + (0.739 + 11.1i)5-s + (−4.94 − 6.80i)6-s + (4.38 − 17.9i)7-s + (−21.5 − 3.41i)8-s + (4.90 − 23.0i)9-s + (−0.705 − 50.9i)10-s + (−29.1 + 6.20i)11-s + (12.8 + 19.7i)12-s + (33.5 + 17.1i)13-s + (−24.2 + 80.8i)14-s + (−15.1 + 14.0i)15-s + (−2.73 − 0.582i)16-s + (−1.86 − 4.86i)17-s + ⋯ |
L(s) = 1 | + (−1.60 − 0.0843i)2-s + (0.223 + 0.276i)3-s + (1.58 + 0.167i)4-s + (0.0661 + 0.997i)5-s + (−0.336 − 0.463i)6-s + (0.236 − 0.971i)7-s + (−0.952 − 0.150i)8-s + (0.181 − 0.854i)9-s + (−0.0223 − 1.61i)10-s + (−0.799 + 0.169i)11-s + (0.309 + 0.476i)12-s + (0.716 + 0.365i)13-s + (−0.463 + 1.54i)14-s + (−0.260 + 0.241i)15-s + (−0.0427 − 0.00909i)16-s + (−0.0266 − 0.0694i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.874+0.484i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.874+0.484i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.874+0.484i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.874+0.484i)
|
Particular Values
L(2) |
≈ |
0.773784−0.199922i |
L(21) |
≈ |
0.773784−0.199922i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.739−11.1i)T |
| 7 | 1+(−4.38+17.9i)T |
good | 2 | 1+(4.55+0.238i)T+(7.95+0.836i)T2 |
| 3 | 1+(−1.16−1.43i)T+(−5.61+26.4i)T2 |
| 11 | 1+(29.1−6.20i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−33.5−17.1i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(1.86+4.86i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(10.3+98.7i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(6.71−128.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(−148.+204.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−48.2+108.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−241.+156.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−373.+121.i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−257.−257.i)T+7.95e4iT2 |
| 47 | 1+(294.+113.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−293.+237.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(191.−212.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(36.1−32.5i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−571.+219.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−775.−563.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−86.5+133.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−148.−332.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(104.−657.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(276.+306.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(−43.0−271.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43957067208015359747188238240, −10.97927059793786143775810120742, −9.958396378775007651552739227663, −9.416368753202821921371668050394, −8.078536189704356120073003709330, −7.28554598066365621324972362072, −6.35798461794319014463723027885, −4.09921729984198371867640362141, −2.54081732856392851211003981882, −0.72421104156829090653480537434,
1.16043952232493245501902253791, 2.41042978609625697956794561764, 4.90355788057364124277218907629, 6.18209073123685632363327291177, 7.85734340304876146258999701336, 8.286897878448972668125393492479, 8.989850687272822753700842153786, 10.20361206759916347285066494274, 10.95453723903529436002587836268, 12.29179480386280711632919021297