Properties

Label 2-175-175.103-c3-0-27
Degree $2$
Conductor $175$
Sign $0.874 + 0.484i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.55 − 0.238i)2-s + (1.16 + 1.43i)3-s + (12.7 + 1.33i)4-s + (0.739 + 11.1i)5-s + (−4.94 − 6.80i)6-s + (4.38 − 17.9i)7-s + (−21.5 − 3.41i)8-s + (4.90 − 23.0i)9-s + (−0.705 − 50.9i)10-s + (−29.1 + 6.20i)11-s + (12.8 + 19.7i)12-s + (33.5 + 17.1i)13-s + (−24.2 + 80.8i)14-s + (−15.1 + 14.0i)15-s + (−2.73 − 0.582i)16-s + (−1.86 − 4.86i)17-s + ⋯
L(s)  = 1  + (−1.60 − 0.0843i)2-s + (0.223 + 0.276i)3-s + (1.58 + 0.167i)4-s + (0.0661 + 0.997i)5-s + (−0.336 − 0.463i)6-s + (0.236 − 0.971i)7-s + (−0.952 − 0.150i)8-s + (0.181 − 0.854i)9-s + (−0.0223 − 1.61i)10-s + (−0.799 + 0.169i)11-s + (0.309 + 0.476i)12-s + (0.716 + 0.365i)13-s + (−0.463 + 1.54i)14-s + (−0.260 + 0.241i)15-s + (−0.0427 − 0.00909i)16-s + (−0.0266 − 0.0694i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.484i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.874 + 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.874 + 0.484i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.874 + 0.484i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.773784 - 0.199922i\)
\(L(\frac12)\) \(\approx\) \(0.773784 - 0.199922i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.739 - 11.1i)T \)
7 \( 1 + (-4.38 + 17.9i)T \)
good2 \( 1 + (4.55 + 0.238i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (-1.16 - 1.43i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (29.1 - 6.20i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (-33.5 - 17.1i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (1.86 + 4.86i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (10.3 + 98.7i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (6.71 - 128. i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (-148. + 204. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-48.2 + 108. i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (-241. + 156. i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-373. + 121. i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-257. - 257. i)T + 7.95e4iT^{2} \)
47 \( 1 + (294. + 113. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (-293. + 237. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (191. - 212. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (36.1 - 32.5i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (-571. + 219. i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (-775. - 563. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-86.5 + 133. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (-148. - 332. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (104. - 657. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (276. + 306. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (-43.0 - 271. i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.43957067208015359747188238240, −10.97927059793786143775810120742, −9.958396378775007651552739227663, −9.416368753202821921371668050394, −8.078536189704356120073003709330, −7.28554598066365621324972362072, −6.35798461794319014463723027885, −4.09921729984198371867640362141, −2.54081732856392851211003981882, −0.72421104156829090653480537434, 1.16043952232493245501902253791, 2.41042978609625697956794561764, 4.90355788057364124277218907629, 6.18209073123685632363327291177, 7.85734340304876146258999701336, 8.286897878448972668125393492479, 8.989850687272822753700842153786, 10.20361206759916347285066494274, 10.95453723903529436002587836268, 12.29179480386280711632919021297

Graph of the $Z$-function along the critical line