L(s) = 1 | + (−2.63 − 0.137i)2-s + (4.95 + 6.11i)3-s + (−1.04 − 0.110i)4-s + (0.357 − 11.1i)5-s + (−12.1 − 16.7i)6-s + (−18.4 − 0.896i)7-s + (23.5 + 3.73i)8-s + (−7.25 + 34.1i)9-s + (−2.48 + 29.3i)10-s + (53.7 − 11.4i)11-s + (−4.52 − 6.96i)12-s + (34.3 + 17.5i)13-s + (48.5 + 4.91i)14-s + (70.0 − 53.1i)15-s + (−53.2 − 11.3i)16-s + (25.2 + 65.6i)17-s + ⋯ |
L(s) = 1 | + (−0.930 − 0.0487i)2-s + (0.952 + 1.17i)3-s + (−0.131 − 0.0137i)4-s + (0.0319 − 0.999i)5-s + (−0.829 − 1.14i)6-s + (−0.998 − 0.0484i)7-s + (1.04 + 0.164i)8-s + (−0.268 + 1.26i)9-s + (−0.0784 + 0.928i)10-s + (1.47 − 0.312i)11-s + (−0.108 − 0.167i)12-s + (0.733 + 0.373i)13-s + (0.926 + 0.0937i)14-s + (1.20 − 0.914i)15-s + (−0.832 − 0.176i)16-s + (0.359 + 0.936i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.489−0.872i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.489−0.872i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.489−0.872i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.489−0.872i)
|
Particular Values
L(2) |
≈ |
1.09478+0.640969i |
L(21) |
≈ |
1.09478+0.640969i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.357+11.1i)T |
| 7 | 1+(18.4+0.896i)T |
good | 2 | 1+(2.63+0.137i)T+(7.95+0.836i)T2 |
| 3 | 1+(−4.95−6.11i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−53.7+11.4i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−34.3−17.5i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−25.2−65.6i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−1.12−10.6i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(9.13−174.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(−72.7+100.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(72.1−161.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−145.+94.5i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−228.+74.2i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−259.−259.i)T+7.95e4iT2 |
| 47 | 1+(−150.−57.8i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(361.−292.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−104.+116.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(667.−601.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−935.+358.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(392.+285.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−451.+695.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−332.−746.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−121.+768.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(323.+359.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(117.+740.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.45656141216963880305355408351, −11.01640454221087448566761613962, −9.867406968861939895246711865411, −9.225516763349434696172849658218, −8.916911822469795900650881186438, −7.83609116353689286760033135070, −5.99875089517887109492149830163, −4.30003833590056142548016369068, −3.63747474713698039572690684837, −1.28925142385483709197359397905,
0.875459045095436970796706456436, 2.50414113038047009225451903730, 3.80034789607156704017049658768, 6.42071411737072304896055561635, 7.01272861939209785622400755531, 7.990133013576499261913267217447, 9.035098700377352918420485961649, 9.693798670182584810641339454222, 10.88804388071032081765900903986, 12.26043869343087201004044650145