L(s) = 1 | + (−4.23 − 0.221i)2-s + (−3.57 − 4.41i)3-s + (9.93 + 1.04i)4-s + (11.1 + 0.705i)5-s + (14.1 + 19.4i)6-s + (17.1 + 7.03i)7-s + (−8.34 − 1.32i)8-s + (−1.09 + 5.14i)9-s + (−47.1 − 5.46i)10-s + (−65.1 + 13.8i)11-s + (−30.9 − 47.5i)12-s + (−2.69 − 1.37i)13-s + (−71.0 − 33.6i)14-s + (−36.7 − 51.7i)15-s + (−43.1 − 9.16i)16-s + (49.9 + 130. i)17-s + ⋯ |
L(s) = 1 | + (−1.49 − 0.0784i)2-s + (−0.687 − 0.849i)3-s + (1.24 + 0.130i)4-s + (0.998 + 0.0630i)5-s + (0.963 + 1.32i)6-s + (0.925 + 0.379i)7-s + (−0.368 − 0.0584i)8-s + (−0.0404 + 0.190i)9-s + (−1.48 − 0.172i)10-s + (−1.78 + 0.379i)11-s + (−0.743 − 1.14i)12-s + (−0.0575 − 0.0293i)13-s + (−1.35 − 0.641i)14-s + (−0.632 − 0.891i)15-s + (−0.673 − 0.143i)16-s + (0.712 + 1.85i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.792−0.609i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.792−0.609i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.792−0.609i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.792−0.609i)
|
Particular Values
L(2) |
≈ |
0.573966+0.195261i |
L(21) |
≈ |
0.573966+0.195261i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−11.1−0.705i)T |
| 7 | 1+(−17.1−7.03i)T |
good | 2 | 1+(4.23+0.221i)T+(7.95+0.836i)T2 |
| 3 | 1+(3.57+4.41i)T+(−5.61+26.4i)T2 |
| 11 | 1+(65.1−13.8i)T+(1.21e3−541.i)T2 |
| 13 | 1+(2.69+1.37i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−49.9−130.i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−3.14−29.9i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−3.34+63.8i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(80.3−110.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(54.6−122.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−67.4+43.7i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−157.+51.1i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−52.0−52.0i)T+7.95e4iT2 |
| 47 | 1+(−267.−102.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(499.−404.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(558.−620.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−557.+502.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−698.+267.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−248.−180.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−360.+555.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−101.−228.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−78.0+492.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−377.−418.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(−162.−1.02e3i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.37628694416241470685469434745, −10.76460717162131638566342325356, −10.60865819013033033106182012931, −9.327507681892167060814463366203, −8.167862948939658397168156907533, −7.50989212482119689751854217780, −6.18153574850963052580183672025, −5.21503192415873663035904075374, −2.20948018136201745352679186799, −1.27939372986389377334997821314,
0.53668226322172993228003092802, 2.33134835393061587407517604533, 4.86727097025416770603215244952, 5.54953959139182688569171464257, 7.33972276844449071330433969908, 8.103114279917202954054357866675, 9.518370233741221707922436139147, 9.959898965763092961500121620501, 10.92578153237046031411559900149, 11.35645698050762031672136719657