L(s) = 1 | + (1.48 + 0.0777i)2-s + (2.51 + 3.10i)3-s + (−5.76 − 0.605i)4-s + (4.25 + 10.3i)5-s + (3.48 + 4.79i)6-s + (−12.4 + 13.7i)7-s + (−20.2 − 3.20i)8-s + (2.30 − 10.8i)9-s + (5.50 + 15.6i)10-s + (−33.2 + 7.06i)11-s + (−12.5 − 19.3i)12-s + (−13.9 − 7.08i)13-s + (−19.4 + 19.4i)14-s + (−21.3 + 39.1i)15-s + (15.5 + 3.30i)16-s + (−27.0 − 70.3i)17-s + ⋯ |
L(s) = 1 | + (0.524 + 0.0274i)2-s + (0.483 + 0.596i)3-s + (−0.720 − 0.0756i)4-s + (0.380 + 0.924i)5-s + (0.237 + 0.326i)6-s + (−0.670 + 0.741i)7-s + (−0.894 − 0.141i)8-s + (0.0853 − 0.401i)9-s + (0.174 + 0.495i)10-s + (−0.911 + 0.193i)11-s + (−0.302 − 0.466i)12-s + (−0.296 − 0.151i)13-s + (−0.372 + 0.370i)14-s + (−0.368 + 0.673i)15-s + (0.242 + 0.0516i)16-s + (−0.385 − 1.00i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.938−0.346i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.938−0.346i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.938−0.346i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.938−0.346i)
|
Particular Values
L(2) |
≈ |
0.210757+1.17916i |
L(21) |
≈ |
0.210757+1.17916i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−4.25−10.3i)T |
| 7 | 1+(12.4−13.7i)T |
good | 2 | 1+(−1.48−0.0777i)T+(7.95+0.836i)T2 |
| 3 | 1+(−2.51−3.10i)T+(−5.61+26.4i)T2 |
| 11 | 1+(33.2−7.06i)T+(1.21e3−541.i)T2 |
| 13 | 1+(13.9+7.08i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(27.0+70.3i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−3.94−37.5i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(10.3−197.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(33.8−46.6i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(69.5−156.i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−48.0+31.2i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(17.8−5.78i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−1.93−1.93i)T+7.95e4iT2 |
| 47 | 1+(−535.−205.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(334.−271.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(215.−239.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(355.−320.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−720.+276.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−617.−448.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−20.1+31.0i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(294.+662.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−227.+1.43e3i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−734.−815.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(96.4+609.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.86607757279030648157196596565, −11.90497349934201635051983916792, −10.44593757171223682120939741160, −9.545685993872558889789129980679, −9.081886042521281844962145011983, −7.46422780552423942415803353876, −6.07890690616351800224560330341, −5.12230524558620231194843678044, −3.58297326273178639546240882712, −2.77000840651938107780579127008,
0.42174017673805608260217994866, 2.41383458604246806086513556907, 4.07896833964963224778327328824, 5.08549892155989603016269598277, 6.38286201754586518319478229837, 7.86438447423932726051754584456, 8.619892479278414319372452562387, 9.693995008624657875305805904550, 10.73149232516426900647403863546, 12.58069227741889351474484443867