Properties

Label 2-175-175.103-c3-0-11
Degree $2$
Conductor $175$
Sign $-0.999 + 0.0373i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.92 − 0.257i)2-s + (6.01 + 7.43i)3-s + (16.2 + 1.70i)4-s + (10.4 + 4.02i)5-s + (−27.7 − 38.1i)6-s + (−17.0 − 7.18i)7-s + (−40.4 − 6.40i)8-s + (−13.3 + 63.0i)9-s + (−50.3 − 22.4i)10-s + (−36.2 + 7.69i)11-s + (84.8 + 130. i)12-s + (−55.0 − 28.0i)13-s + (82.1 + 39.7i)14-s + (32.8 + 101. i)15-s + (69.7 + 14.8i)16-s + (−22.1 − 57.7i)17-s + ⋯
L(s)  = 1  + (−1.74 − 0.0912i)2-s + (1.15 + 1.43i)3-s + (2.02 + 0.212i)4-s + (0.933 + 0.359i)5-s + (−1.88 − 2.59i)6-s + (−0.921 − 0.388i)7-s + (−1.78 − 0.282i)8-s + (−0.496 + 2.33i)9-s + (−1.59 − 0.711i)10-s + (−0.992 + 0.210i)11-s + (2.04 + 3.14i)12-s + (−1.17 − 0.598i)13-s + (1.56 + 0.759i)14-s + (0.566 + 1.75i)15-s + (1.08 + 0.231i)16-s + (−0.316 − 0.823i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0373i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0373i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.999 + 0.0373i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -0.999 + 0.0373i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0118615 - 0.634902i\)
\(L(\frac12)\) \(\approx\) \(0.0118615 - 0.634902i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-10.4 - 4.02i)T \)
7 \( 1 + (17.0 + 7.18i)T \)
good2 \( 1 + (4.92 + 0.257i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (-6.01 - 7.43i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (36.2 - 7.69i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (55.0 + 28.0i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (22.1 + 57.7i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-10.8 - 103. i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (-1.82 + 34.8i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (31.4 - 43.3i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (118. - 267. i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (39.8 - 25.8i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-33.6 + 10.9i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-155. - 155. i)T + 7.95e4iT^{2} \)
47 \( 1 + (161. + 62.1i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (-33.8 + 27.3i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (-270. + 300. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-323. + 290. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (-161. + 61.9i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (258. + 187. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (426. - 657. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (-350. - 786. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (27.2 - 172. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (-426. - 473. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (-234. - 1.48e3i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75475150763315007551139933398, −10.83030494746350303286683873103, −10.17256445105658024789138433071, −9.832382948607493089554442896044, −9.101532314694259653586075702127, −8.004835651401623457978948376805, −7.04301529369881375847089702964, −5.20485423768531611588139923541, −3.16248654212963464212977112626, −2.33033921624057747447532650367, 0.39178014286763846273097831274, 2.03734825586936992995347149462, 2.61594902929862288685182932213, 6.01031221353963607827422799172, 6.98586516657973673310936040685, 7.73559375962770525579563273578, 8.891611777615834784530473623380, 9.257719145812341874294388622862, 10.20128145833379688138927944342, 11.75746244781932107397343265225

Graph of the $Z$-function along the critical line