Properties

Label 2-175-175.103-c1-0-16
Degree $2$
Conductor $175$
Sign $-0.523 - 0.851i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.802 − 0.0420i)2-s + (−1.97 − 2.43i)3-s + (−1.34 − 0.141i)4-s + (−1.30 − 1.81i)5-s + (1.48 + 2.03i)6-s + (2.52 + 0.782i)7-s + (2.66 + 0.421i)8-s + (−1.42 + 6.69i)9-s + (0.974 + 1.50i)10-s + (−4.90 + 1.04i)11-s + (2.31 + 3.56i)12-s + (−0.816 − 0.416i)13-s + (−1.99 − 0.734i)14-s + (−1.83 + 6.77i)15-s + (0.531 + 0.112i)16-s + (0.185 + 0.483i)17-s + ⋯
L(s)  = 1  + (−0.567 − 0.0297i)2-s + (−1.14 − 1.40i)3-s + (−0.673 − 0.0707i)4-s + (−0.585 − 0.810i)5-s + (0.605 + 0.832i)6-s + (0.955 + 0.295i)7-s + (0.941 + 0.149i)8-s + (−0.474 + 2.23i)9-s + (0.308 + 0.477i)10-s + (−1.47 + 0.314i)11-s + (0.668 + 1.02i)12-s + (−0.226 − 0.115i)13-s + (−0.533 − 0.196i)14-s + (−0.474 + 1.74i)15-s + (0.132 + 0.0282i)16-s + (0.0450 + 0.117i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.523 - 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.523 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.523 - 0.851i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ -0.523 - 0.851i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0480367 + 0.0859202i\)
\(L(\frac12)\) \(\approx\) \(0.0480367 + 0.0859202i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (1.30 + 1.81i)T \)
7 \( 1 + (-2.52 - 0.782i)T \)
good2 \( 1 + (0.802 + 0.0420i)T + (1.98 + 0.209i)T^{2} \)
3 \( 1 + (1.97 + 2.43i)T + (-0.623 + 2.93i)T^{2} \)
11 \( 1 + (4.90 - 1.04i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (0.816 + 0.416i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (-0.185 - 0.483i)T + (-12.6 + 11.3i)T^{2} \)
19 \( 1 + (0.116 + 1.10i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-0.270 + 5.16i)T + (-22.8 - 2.40i)T^{2} \)
29 \( 1 + (3.39 - 4.67i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (0.139 - 0.312i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (5.35 - 3.47i)T + (15.0 - 33.8i)T^{2} \)
41 \( 1 + (6.75 - 2.19i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (3.02 + 3.02i)T + 43iT^{2} \)
47 \( 1 + (11.9 + 4.57i)T + (34.9 + 31.4i)T^{2} \)
53 \( 1 + (-4.55 + 3.68i)T + (11.0 - 51.8i)T^{2} \)
59 \( 1 + (-5.88 + 6.53i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (1.07 - 0.969i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (-1.31 + 0.504i)T + (49.7 - 44.8i)T^{2} \)
71 \( 1 + (6.16 + 4.47i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (0.656 - 1.01i)T + (-29.6 - 66.6i)T^{2} \)
79 \( 1 + (-1.97 - 4.44i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (-0.543 + 3.42i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (2.10 + 2.33i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (-0.557 - 3.51i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.14947372554925653851980623592, −11.19015393413831594107187930178, −10.28486019950748108280448776610, −8.505628132299661063278817370274, −8.051000744064590943808263277139, −7.09373204068613572343923113008, −5.24005218927700893125136804207, −4.95707539703682876426468950943, −1.71341474561782469128192481857, −0.12863332146796702010775349552, 3.65184410729454148587361052473, 4.72943054411122650293939155613, 5.57111353298861253306574253310, 7.38411308901697602428324772991, 8.352419650329903322267316789624, 9.739911118268096447763924382509, 10.42866961230512896981239155487, 11.06542507940083816543821945177, 11.85897784248344327662465338451, 13.42274050681258480635120303784

Graph of the $Z$-function along the critical line