L(s) = 1 | + (−1.61 − 0.0848i)2-s + (1.71 + 2.12i)3-s + (0.622 + 0.0653i)4-s + (−2.19 − 0.449i)5-s + (−2.60 − 3.58i)6-s + (−0.156 + 2.64i)7-s + (2.19 + 0.348i)8-s + (−0.927 + 4.36i)9-s + (3.50 + 0.912i)10-s + (−3.84 + 0.816i)11-s + (0.930 + 1.43i)12-s + (−0.0865 − 0.0441i)13-s + (0.476 − 4.26i)14-s + (−2.81 − 5.42i)15-s + (−4.75 − 1.01i)16-s + (−1.20 − 3.12i)17-s + ⋯ |
L(s) = 1 | + (−1.14 − 0.0599i)2-s + (0.992 + 1.22i)3-s + (0.311 + 0.0326i)4-s + (−0.979 − 0.200i)5-s + (−1.06 − 1.46i)6-s + (−0.0590 + 0.998i)7-s + (0.777 + 0.123i)8-s + (−0.309 + 1.45i)9-s + (1.10 + 0.288i)10-s + (−1.15 + 0.246i)11-s + (0.268 + 0.413i)12-s + (−0.0240 − 0.0122i)13-s + (0.127 − 1.13i)14-s + (−0.726 − 1.40i)15-s + (−1.18 − 0.252i)16-s + (−0.291 − 0.758i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.650−0.759i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(−0.650−0.759i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.650−0.759i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), −0.650−0.759i)
|
Particular Values
L(1) |
≈ |
0.245892+0.534418i |
L(21) |
≈ |
0.245892+0.534418i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.19+0.449i)T |
| 7 | 1+(0.156−2.64i)T |
good | 2 | 1+(1.61+0.0848i)T+(1.98+0.209i)T2 |
| 3 | 1+(−1.71−2.12i)T+(−0.623+2.93i)T2 |
| 11 | 1+(3.84−0.816i)T+(10.0−4.47i)T2 |
| 13 | 1+(0.0865+0.0441i)T+(7.64+10.5i)T2 |
| 17 | 1+(1.20+3.12i)T+(−12.6+11.3i)T2 |
| 19 | 1+(−0.637−6.06i)T+(−18.5+3.95i)T2 |
| 23 | 1+(0.274−5.23i)T+(−22.8−2.40i)T2 |
| 29 | 1+(−2.51+3.45i)T+(−8.96−27.5i)T2 |
| 31 | 1+(0.287−0.644i)T+(−20.7−23.0i)T2 |
| 37 | 1+(−6.47+4.20i)T+(15.0−33.8i)T2 |
| 41 | 1+(−0.124+0.0405i)T+(33.1−24.0i)T2 |
| 43 | 1+(−8.25−8.25i)T+43iT2 |
| 47 | 1+(−2.52−0.970i)T+(34.9+31.4i)T2 |
| 53 | 1+(−9.13+7.40i)T+(11.0−51.8i)T2 |
| 59 | 1+(3.45−3.83i)T+(−6.16−58.6i)T2 |
| 61 | 1+(−5.30+4.77i)T+(6.37−60.6i)T2 |
| 67 | 1+(0.521−0.200i)T+(49.7−44.8i)T2 |
| 71 | 1+(−0.818−0.594i)T+(21.9+67.5i)T2 |
| 73 | 1+(1.16−1.78i)T+(−29.6−66.6i)T2 |
| 79 | 1+(6.28+14.1i)T+(−52.8+58.7i)T2 |
| 83 | 1+(1.69−10.6i)T+(−78.9−25.6i)T2 |
| 89 | 1+(0.671+0.745i)T+(−9.30+88.5i)T2 |
| 97 | 1+(−1.77−11.1i)T+(−92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.08092034749992921466873928581, −11.76120108834835600436593433991, −10.70004848626941954287720432121, −9.746441421036981997590479370168, −9.142098206965386804367483985567, −8.165093970987205626388230943505, −7.69384260101516957106440280985, −5.25428453878943160595979614933, −4.11155813620891829886366045723, −2.64316838740287633915573303706,
0.71544412926689194672832178930, 2.68702647272042775487611078696, 4.33175903075558180590606434754, 6.87190228515827188607691936518, 7.43454353063621751289141090794, 8.225944984093883477973071196389, 8.834994876578255259352785140992, 10.35100931284804131817473100001, 11.06022124121242538530456019794, 12.60053693523658359875899137985