Properties

Label 2-175-175.103-c1-0-1
Degree $2$
Conductor $175$
Sign $-0.650 - 0.759i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.61 − 0.0848i)2-s + (1.71 + 2.12i)3-s + (0.622 + 0.0653i)4-s + (−2.19 − 0.449i)5-s + (−2.60 − 3.58i)6-s + (−0.156 + 2.64i)7-s + (2.19 + 0.348i)8-s + (−0.927 + 4.36i)9-s + (3.50 + 0.912i)10-s + (−3.84 + 0.816i)11-s + (0.930 + 1.43i)12-s + (−0.0865 − 0.0441i)13-s + (0.476 − 4.26i)14-s + (−2.81 − 5.42i)15-s + (−4.75 − 1.01i)16-s + (−1.20 − 3.12i)17-s + ⋯
L(s)  = 1  + (−1.14 − 0.0599i)2-s + (0.992 + 1.22i)3-s + (0.311 + 0.0326i)4-s + (−0.979 − 0.200i)5-s + (−1.06 − 1.46i)6-s + (−0.0590 + 0.998i)7-s + (0.777 + 0.123i)8-s + (−0.309 + 1.45i)9-s + (1.10 + 0.288i)10-s + (−1.15 + 0.246i)11-s + (0.268 + 0.413i)12-s + (−0.0240 − 0.0122i)13-s + (0.127 − 1.13i)14-s + (−0.726 − 1.40i)15-s + (−1.18 − 0.252i)16-s + (−0.291 − 0.758i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.650 - 0.759i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.650 - 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.650 - 0.759i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ -0.650 - 0.759i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.245892 + 0.534418i\)
\(L(\frac12)\) \(\approx\) \(0.245892 + 0.534418i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (2.19 + 0.449i)T \)
7 \( 1 + (0.156 - 2.64i)T \)
good2 \( 1 + (1.61 + 0.0848i)T + (1.98 + 0.209i)T^{2} \)
3 \( 1 + (-1.71 - 2.12i)T + (-0.623 + 2.93i)T^{2} \)
11 \( 1 + (3.84 - 0.816i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (0.0865 + 0.0441i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (1.20 + 3.12i)T + (-12.6 + 11.3i)T^{2} \)
19 \( 1 + (-0.637 - 6.06i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (0.274 - 5.23i)T + (-22.8 - 2.40i)T^{2} \)
29 \( 1 + (-2.51 + 3.45i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (0.287 - 0.644i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (-6.47 + 4.20i)T + (15.0 - 33.8i)T^{2} \)
41 \( 1 + (-0.124 + 0.0405i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (-8.25 - 8.25i)T + 43iT^{2} \)
47 \( 1 + (-2.52 - 0.970i)T + (34.9 + 31.4i)T^{2} \)
53 \( 1 + (-9.13 + 7.40i)T + (11.0 - 51.8i)T^{2} \)
59 \( 1 + (3.45 - 3.83i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (-5.30 + 4.77i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (0.521 - 0.200i)T + (49.7 - 44.8i)T^{2} \)
71 \( 1 + (-0.818 - 0.594i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (1.16 - 1.78i)T + (-29.6 - 66.6i)T^{2} \)
79 \( 1 + (6.28 + 14.1i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (1.69 - 10.6i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (0.671 + 0.745i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (-1.77 - 11.1i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08092034749992921466873928581, −11.76120108834835600436593433991, −10.70004848626941954287720432121, −9.746441421036981997590479370168, −9.142098206965386804367483985567, −8.165093970987205626388230943505, −7.69384260101516957106440280985, −5.25428453878943160595979614933, −4.11155813620891829886366045723, −2.64316838740287633915573303706, 0.71544412926689194672832178930, 2.68702647272042775487611078696, 4.33175903075558180590606434754, 6.87190228515827188607691936518, 7.43454353063621751289141090794, 8.225944984093883477973071196389, 8.834994876578255259352785140992, 10.35100931284804131817473100001, 11.06022124121242538530456019794, 12.60053693523658359875899137985

Graph of the $Z$-function along the critical line