Properties

Label 2-175-1.1-c9-0-48
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $90.1312$
Root an. cond. $9.49374$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 41.8·2-s − 0.232·3-s + 1.23e3·4-s + 9.71·6-s − 2.40e3·7-s − 3.02e4·8-s − 1.96e4·9-s + 1.74e4·11-s − 287.·12-s + 1.22e5·13-s + 1.00e5·14-s + 6.31e5·16-s − 3.31e5·17-s + 8.22e5·18-s + 7.61e5·19-s + 557.·21-s − 7.27e5·22-s − 1.23e6·23-s + 7.02e3·24-s − 5.12e6·26-s + 9.14e3·27-s − 2.96e6·28-s + 6.34e5·29-s − 5.38e6·31-s − 1.09e7·32-s − 4.04e3·33-s + 1.38e7·34-s + ⋯
L(s)  = 1  − 1.84·2-s − 0.00165·3-s + 2.41·4-s + 0.00305·6-s − 0.377·7-s − 2.61·8-s − 0.999·9-s + 0.358·11-s − 0.00399·12-s + 1.18·13-s + 0.698·14-s + 2.40·16-s − 0.963·17-s + 1.84·18-s + 1.34·19-s + 0.000625·21-s − 0.662·22-s − 0.918·23-s + 0.00432·24-s − 2.19·26-s + 0.00331·27-s − 0.911·28-s + 0.166·29-s − 1.04·31-s − 1.84·32-s − 0.000593·33-s + 1.78·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(90.1312\)
Root analytic conductor: \(9.49374\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 2.40e3T \)
good2 \( 1 + 41.8T + 512T^{2} \)
3 \( 1 + 0.232T + 1.96e4T^{2} \)
11 \( 1 - 1.74e4T + 2.35e9T^{2} \)
13 \( 1 - 1.22e5T + 1.06e10T^{2} \)
17 \( 1 + 3.31e5T + 1.18e11T^{2} \)
19 \( 1 - 7.61e5T + 3.22e11T^{2} \)
23 \( 1 + 1.23e6T + 1.80e12T^{2} \)
29 \( 1 - 6.34e5T + 1.45e13T^{2} \)
31 \( 1 + 5.38e6T + 2.64e13T^{2} \)
37 \( 1 - 3.03e6T + 1.29e14T^{2} \)
41 \( 1 + 7.37e6T + 3.27e14T^{2} \)
43 \( 1 - 2.06e7T + 5.02e14T^{2} \)
47 \( 1 + 2.03e7T + 1.11e15T^{2} \)
53 \( 1 - 5.97e7T + 3.29e15T^{2} \)
59 \( 1 - 6.03e7T + 8.66e15T^{2} \)
61 \( 1 + 9.44e6T + 1.16e16T^{2} \)
67 \( 1 - 2.19e8T + 2.72e16T^{2} \)
71 \( 1 + 5.58e7T + 4.58e16T^{2} \)
73 \( 1 + 4.54e8T + 5.88e16T^{2} \)
79 \( 1 - 4.51e7T + 1.19e17T^{2} \)
83 \( 1 - 3.34e8T + 1.86e17T^{2} \)
89 \( 1 - 6.51e8T + 3.50e17T^{2} \)
97 \( 1 - 1.42e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37834716956538260633371184062, −9.283465067646399912760846369696, −8.727435038290865487068702517424, −7.76428635774332607700997674421, −6.64343944577379389018788736492, −5.76992256572035306271007633339, −3.51323292606239476890250889953, −2.27953042054204630079114654229, −1.05183241118828760893794326512, 0, 1.05183241118828760893794326512, 2.27953042054204630079114654229, 3.51323292606239476890250889953, 5.76992256572035306271007633339, 6.64343944577379389018788736492, 7.76428635774332607700997674421, 8.727435038290865487068702517424, 9.283465067646399912760846369696, 10.37834716956538260633371184062

Graph of the $Z$-function along the critical line