Properties

Label 2-175-1.1-c3-0-8
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.504·2-s + 4.26·3-s − 7.74·4-s − 2.15·6-s + 7·7-s + 7.94·8-s − 8.82·9-s + 54.8·11-s − 33.0·12-s + 16.0·13-s − 3.53·14-s + 57.9·16-s − 0.422·17-s + 4.45·18-s + 127.·19-s + 29.8·21-s − 27.7·22-s + 51.1·23-s + 33.8·24-s − 8.08·26-s − 152.·27-s − 54.2·28-s + 41.4·29-s + 192.·31-s − 92.8·32-s + 233.·33-s + 0.213·34-s + ⋯
L(s)  = 1  − 0.178·2-s + 0.820·3-s − 0.968·4-s − 0.146·6-s + 0.377·7-s + 0.351·8-s − 0.326·9-s + 1.50·11-s − 0.794·12-s + 0.341·13-s − 0.0674·14-s + 0.905·16-s − 0.00602·17-s + 0.0583·18-s + 1.53·19-s + 0.310·21-s − 0.268·22-s + 0.463·23-s + 0.288·24-s − 0.0609·26-s − 1.08·27-s − 0.365·28-s + 0.265·29-s + 1.11·31-s − 0.512·32-s + 1.23·33-s + 0.00107·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.830929131\)
\(L(\frac12)\) \(\approx\) \(1.830929131\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 + 0.504T + 8T^{2} \)
3 \( 1 - 4.26T + 27T^{2} \)
11 \( 1 - 54.8T + 1.33e3T^{2} \)
13 \( 1 - 16.0T + 2.19e3T^{2} \)
17 \( 1 + 0.422T + 4.91e3T^{2} \)
19 \( 1 - 127.T + 6.85e3T^{2} \)
23 \( 1 - 51.1T + 1.21e4T^{2} \)
29 \( 1 - 41.4T + 2.43e4T^{2} \)
31 \( 1 - 192.T + 2.97e4T^{2} \)
37 \( 1 + 189.T + 5.06e4T^{2} \)
41 \( 1 + 76.3T + 6.89e4T^{2} \)
43 \( 1 - 294.T + 7.95e4T^{2} \)
47 \( 1 - 540.T + 1.03e5T^{2} \)
53 \( 1 + 661.T + 1.48e5T^{2} \)
59 \( 1 - 410.T + 2.05e5T^{2} \)
61 \( 1 - 46.0T + 2.26e5T^{2} \)
67 \( 1 - 10.4T + 3.00e5T^{2} \)
71 \( 1 + 491.T + 3.57e5T^{2} \)
73 \( 1 + 814.T + 3.89e5T^{2} \)
79 \( 1 + 858.T + 4.93e5T^{2} \)
83 \( 1 + 1.05e3T + 5.71e5T^{2} \)
89 \( 1 - 341.T + 7.04e5T^{2} \)
97 \( 1 + 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.26053526007075512507719814418, −11.33028578209523573557695785688, −9.892273726653195028222975289733, −9.049780431728389803409956612483, −8.473298194236115450889964792591, −7.32225590059572440674240905108, −5.72724151351234671324246482849, −4.34301677681016364597321912056, −3.21776217946735066482870990446, −1.18988022864534923705269285696, 1.18988022864534923705269285696, 3.21776217946735066482870990446, 4.34301677681016364597321912056, 5.72724151351234671324246482849, 7.32225590059572440674240905108, 8.473298194236115450889964792591, 9.049780431728389803409956612483, 9.892273726653195028222975289733, 11.33028578209523573557695785688, 12.26053526007075512507719814418

Graph of the $Z$-function along the critical line