Properties

Label 2-175-1.1-c3-0-6
Degree 22
Conductor 175175
Sign 11
Analytic cond. 10.325310.3253
Root an. cond. 3.213303.21330
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.55·2-s − 4.96·3-s − 5.58·4-s − 7.71·6-s + 7·7-s − 21.1·8-s − 2.38·9-s + 29.8·11-s + 27.6·12-s + 90.7·13-s + 10.8·14-s + 11.7·16-s + 29.5·17-s − 3.70·18-s − 62.3·19-s − 34.7·21-s + 46.3·22-s + 90.6·23-s + 104.·24-s + 141.·26-s + 145.·27-s − 39.0·28-s + 193.·29-s − 152.·31-s + 187.·32-s − 147.·33-s + 45.9·34-s + ⋯
L(s)  = 1  + 0.549·2-s − 0.954·3-s − 0.697·4-s − 0.525·6-s + 0.377·7-s − 0.933·8-s − 0.0882·9-s + 0.817·11-s + 0.666·12-s + 1.93·13-s + 0.207·14-s + 0.184·16-s + 0.421·17-s − 0.0485·18-s − 0.752·19-s − 0.360·21-s + 0.449·22-s + 0.821·23-s + 0.891·24-s + 1.06·26-s + 1.03·27-s − 0.263·28-s + 1.23·29-s − 0.881·31-s + 1.03·32-s − 0.780·33-s + 0.232·34-s + ⋯

Functional equation

Λ(s)=(175s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
Λ(s)=(175s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 175175    =    5275^{2} \cdot 7
Sign: 11
Analytic conductor: 10.325310.3253
Root analytic conductor: 3.213303.21330
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 175, ( :3/2), 1)(2,\ 175,\ (\ :3/2),\ 1)

Particular Values

L(2)L(2) \approx 1.3920432061.392043206
L(12)L(\frac12) \approx 1.3920432061.392043206
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
7 17T 1 - 7T
good2 11.55T+8T2 1 - 1.55T + 8T^{2}
3 1+4.96T+27T2 1 + 4.96T + 27T^{2}
11 129.8T+1.33e3T2 1 - 29.8T + 1.33e3T^{2}
13 190.7T+2.19e3T2 1 - 90.7T + 2.19e3T^{2}
17 129.5T+4.91e3T2 1 - 29.5T + 4.91e3T^{2}
19 1+62.3T+6.85e3T2 1 + 62.3T + 6.85e3T^{2}
23 190.6T+1.21e4T2 1 - 90.6T + 1.21e4T^{2}
29 1193.T+2.43e4T2 1 - 193.T + 2.43e4T^{2}
31 1+152.T+2.97e4T2 1 + 152.T + 2.97e4T^{2}
37 1102.T+5.06e4T2 1 - 102.T + 5.06e4T^{2}
41 1+266.T+6.89e4T2 1 + 266.T + 6.89e4T^{2}
43 1387.T+7.95e4T2 1 - 387.T + 7.95e4T^{2}
47 1+152.T+1.03e5T2 1 + 152.T + 1.03e5T^{2}
53 1+81.5T+1.48e5T2 1 + 81.5T + 1.48e5T^{2}
59 1+235.T+2.05e5T2 1 + 235.T + 2.05e5T^{2}
61 1510.T+2.26e5T2 1 - 510.T + 2.26e5T^{2}
67 1+347.T+3.00e5T2 1 + 347.T + 3.00e5T^{2}
71 1317.T+3.57e5T2 1 - 317.T + 3.57e5T^{2}
73 1+709.T+3.89e5T2 1 + 709.T + 3.89e5T^{2}
79 11.06e3T+4.93e5T2 1 - 1.06e3T + 4.93e5T^{2}
83 1503.T+5.71e5T2 1 - 503.T + 5.71e5T^{2}
89 1482.T+7.04e5T2 1 - 482.T + 7.04e5T^{2}
97 1481.T+9.12e5T2 1 - 481.T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.24564744287305817197683230721, −11.37700675714668244784993218792, −10.59071143359218619923739112422, −9.081497581070433486425702362394, −8.364339837620896382315771286701, −6.49656153616018966220551853942, −5.77818845190338978788656727815, −4.65521735189639904497631826090, −3.50941245521523224717411538051, −0.953443287762168989611222339201, 0.953443287762168989611222339201, 3.50941245521523224717411538051, 4.65521735189639904497631826090, 5.77818845190338978788656727815, 6.49656153616018966220551853942, 8.364339837620896382315771286701, 9.081497581070433486425702362394, 10.59071143359218619923739112422, 11.37700675714668244784993218792, 12.24564744287305817197683230721

Graph of the ZZ-function along the critical line