Properties

Label 2-175-1.1-c3-0-6
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.55·2-s − 4.96·3-s − 5.58·4-s − 7.71·6-s + 7·7-s − 21.1·8-s − 2.38·9-s + 29.8·11-s + 27.6·12-s + 90.7·13-s + 10.8·14-s + 11.7·16-s + 29.5·17-s − 3.70·18-s − 62.3·19-s − 34.7·21-s + 46.3·22-s + 90.6·23-s + 104.·24-s + 141.·26-s + 145.·27-s − 39.0·28-s + 193.·29-s − 152.·31-s + 187.·32-s − 147.·33-s + 45.9·34-s + ⋯
L(s)  = 1  + 0.549·2-s − 0.954·3-s − 0.697·4-s − 0.525·6-s + 0.377·7-s − 0.933·8-s − 0.0882·9-s + 0.817·11-s + 0.666·12-s + 1.93·13-s + 0.207·14-s + 0.184·16-s + 0.421·17-s − 0.0485·18-s − 0.752·19-s − 0.360·21-s + 0.449·22-s + 0.821·23-s + 0.891·24-s + 1.06·26-s + 1.03·27-s − 0.263·28-s + 1.23·29-s − 0.881·31-s + 1.03·32-s − 0.780·33-s + 0.232·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.392043206\)
\(L(\frac12)\) \(\approx\) \(1.392043206\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 1.55T + 8T^{2} \)
3 \( 1 + 4.96T + 27T^{2} \)
11 \( 1 - 29.8T + 1.33e3T^{2} \)
13 \( 1 - 90.7T + 2.19e3T^{2} \)
17 \( 1 - 29.5T + 4.91e3T^{2} \)
19 \( 1 + 62.3T + 6.85e3T^{2} \)
23 \( 1 - 90.6T + 1.21e4T^{2} \)
29 \( 1 - 193.T + 2.43e4T^{2} \)
31 \( 1 + 152.T + 2.97e4T^{2} \)
37 \( 1 - 102.T + 5.06e4T^{2} \)
41 \( 1 + 266.T + 6.89e4T^{2} \)
43 \( 1 - 387.T + 7.95e4T^{2} \)
47 \( 1 + 152.T + 1.03e5T^{2} \)
53 \( 1 + 81.5T + 1.48e5T^{2} \)
59 \( 1 + 235.T + 2.05e5T^{2} \)
61 \( 1 - 510.T + 2.26e5T^{2} \)
67 \( 1 + 347.T + 3.00e5T^{2} \)
71 \( 1 - 317.T + 3.57e5T^{2} \)
73 \( 1 + 709.T + 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 - 503.T + 5.71e5T^{2} \)
89 \( 1 - 482.T + 7.04e5T^{2} \)
97 \( 1 - 481.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24564744287305817197683230721, −11.37700675714668244784993218792, −10.59071143359218619923739112422, −9.081497581070433486425702362394, −8.364339837620896382315771286701, −6.49656153616018966220551853942, −5.77818845190338978788656727815, −4.65521735189639904497631826090, −3.50941245521523224717411538051, −0.953443287762168989611222339201, 0.953443287762168989611222339201, 3.50941245521523224717411538051, 4.65521735189639904497631826090, 5.77818845190338978788656727815, 6.49656153616018966220551853942, 8.364339837620896382315771286701, 9.081497581070433486425702362394, 10.59071143359218619923739112422, 11.37700675714668244784993218792, 12.24564744287305817197683230721

Graph of the $Z$-function along the critical line