Properties

Label 2-175-1.1-c3-0-28
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.70·2-s − 0.701·3-s − 0.701·4-s − 1.89·6-s − 7·7-s − 23.5·8-s − 26.5·9-s + 4.01·11-s + 0.492·12-s − 51.6·13-s − 18.9·14-s − 57.8·16-s + 67.5·17-s − 71.6·18-s − 50.9·19-s + 4.91·21-s + 10.8·22-s − 0.507·23-s + 16.4·24-s − 139.·26-s + 37.5·27-s + 4.91·28-s − 120.·29-s − 292.·31-s + 31.6·32-s − 2.81·33-s + 182.·34-s + ⋯
L(s)  = 1  + 0.955·2-s − 0.135·3-s − 0.0876·4-s − 0.128·6-s − 0.377·7-s − 1.03·8-s − 0.981·9-s + 0.110·11-s + 0.0118·12-s − 1.10·13-s − 0.361·14-s − 0.904·16-s + 0.963·17-s − 0.937·18-s − 0.614·19-s + 0.0510·21-s + 0.105·22-s − 0.00460·23-s + 0.140·24-s − 1.05·26-s + 0.267·27-s + 0.0331·28-s − 0.768·29-s − 1.69·31-s + 0.174·32-s − 0.0148·33-s + 0.919·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 - 2.70T + 8T^{2} \)
3 \( 1 + 0.701T + 27T^{2} \)
11 \( 1 - 4.01T + 1.33e3T^{2} \)
13 \( 1 + 51.6T + 2.19e3T^{2} \)
17 \( 1 - 67.5T + 4.91e3T^{2} \)
19 \( 1 + 50.9T + 6.85e3T^{2} \)
23 \( 1 + 0.507T + 1.21e4T^{2} \)
29 \( 1 + 120.T + 2.43e4T^{2} \)
31 \( 1 + 292.T + 2.97e4T^{2} \)
37 \( 1 - 144.T + 5.06e4T^{2} \)
41 \( 1 + 57.2T + 6.89e4T^{2} \)
43 \( 1 - 283.T + 7.95e4T^{2} \)
47 \( 1 - 233.T + 1.03e5T^{2} \)
53 \( 1 - 406.T + 1.48e5T^{2} \)
59 \( 1 + 577.T + 2.05e5T^{2} \)
61 \( 1 - 322.T + 2.26e5T^{2} \)
67 \( 1 + 985.T + 3.00e5T^{2} \)
71 \( 1 - 1.03e3T + 3.57e5T^{2} \)
73 \( 1 + 692.T + 3.89e5T^{2} \)
79 \( 1 + 428.T + 4.93e5T^{2} \)
83 \( 1 - 537.T + 5.71e5T^{2} \)
89 \( 1 + 802.T + 7.04e5T^{2} \)
97 \( 1 + 1.75e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12051641293368434184237837492, −11.01536046124060297222088543429, −9.682786504174133975214554776520, −8.811989879933023661582142136227, −7.42019505391068780583462265063, −5.99964463771112478201905188201, −5.26334827648799051867220881762, −3.91830347509576499915907771365, −2.69632348137062077335168125393, 0, 2.69632348137062077335168125393, 3.91830347509576499915907771365, 5.26334827648799051867220881762, 5.99964463771112478201905188201, 7.42019505391068780583462265063, 8.811989879933023661582142136227, 9.682786504174133975214554776520, 11.01536046124060297222088543429, 12.12051641293368434184237837492

Graph of the $Z$-function along the critical line