L(s) = 1 | + 3.70·2-s − 5.70·3-s + 5.70·4-s − 21.1·6-s + 7·7-s − 8.50·8-s + 5.50·9-s − 60.0·11-s − 32.5·12-s + 0.387·13-s + 25.9·14-s − 77.1·16-s − 35.4·17-s + 20.3·18-s − 6.08·19-s − 39.9·21-s − 222.·22-s − 31.5·23-s + 48.5·24-s + 1.43·26-s + 122.·27-s + 39.9·28-s − 292.·29-s + 130.·31-s − 217.·32-s + 342.·33-s − 131.·34-s + ⋯ |
L(s) = 1 | + 1.30·2-s − 1.09·3-s + 0.712·4-s − 1.43·6-s + 0.377·7-s − 0.375·8-s + 0.203·9-s − 1.64·11-s − 0.782·12-s + 0.00826·13-s + 0.494·14-s − 1.20·16-s − 0.506·17-s + 0.266·18-s − 0.0735·19-s − 0.414·21-s − 2.15·22-s − 0.285·23-s + 0.412·24-s + 0.0108·26-s + 0.873·27-s + 0.269·28-s − 1.87·29-s + 0.754·31-s − 1.20·32-s + 1.80·33-s − 0.662·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 - 3.70T + 8T^{2} \) |
| 3 | \( 1 + 5.70T + 27T^{2} \) |
| 11 | \( 1 + 60.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 0.387T + 2.19e3T^{2} \) |
| 17 | \( 1 + 35.4T + 4.91e3T^{2} \) |
| 19 | \( 1 + 6.08T + 6.85e3T^{2} \) |
| 23 | \( 1 + 31.5T + 1.21e4T^{2} \) |
| 29 | \( 1 + 292.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 130.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 219.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 447.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 210.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 457.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 144.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 767.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 667.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 77.4T + 3.00e5T^{2} \) |
| 71 | \( 1 + 906.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 1.02e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 690.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 979.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 910.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 11.1T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.81060899338680642566422338599, −11.18416571236392558920315170740, −10.19070532802241013393613546265, −8.572694527299726185272702389007, −7.17324282741871468990964568201, −5.82222010806092813349944616445, −5.32524021533170179510612206801, −4.25786100174908932059413621330, −2.59754481515396888206185300654, 0,
2.59754481515396888206185300654, 4.25786100174908932059413621330, 5.32524021533170179510612206801, 5.82222010806092813349944616445, 7.17324282741871468990964568201, 8.572694527299726185272702389007, 10.19070532802241013393613546265, 11.18416571236392558920315170740, 11.81060899338680642566422338599