L(s) = 1 | + 4.62·2-s + 8.38·3-s + 13.3·4-s + 38.7·6-s − 7·7-s + 24.9·8-s + 43.3·9-s − 30.1·11-s + 112.·12-s − 88.9·13-s − 32.3·14-s + 8.10·16-s + 4.73·17-s + 200.·18-s + 124.·19-s − 58.7·21-s − 139.·22-s − 20.2·23-s + 208.·24-s − 411.·26-s + 136.·27-s − 93.7·28-s + 134.·29-s − 2.03·31-s − 161.·32-s − 252.·33-s + 21.9·34-s + ⋯ |
L(s) = 1 | + 1.63·2-s + 1.61·3-s + 1.67·4-s + 2.63·6-s − 0.377·7-s + 1.10·8-s + 1.60·9-s − 0.825·11-s + 2.70·12-s − 1.89·13-s − 0.617·14-s + 0.126·16-s + 0.0675·17-s + 2.62·18-s + 1.50·19-s − 0.610·21-s − 1.34·22-s − 0.183·23-s + 1.77·24-s − 3.10·26-s + 0.976·27-s − 0.632·28-s + 0.858·29-s − 0.0118·31-s − 0.893·32-s − 1.33·33-s + 0.110·34-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.991451977 |
L(21) |
≈ |
5.991451977 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1+7T |
good | 2 | 1−4.62T+8T2 |
| 3 | 1−8.38T+27T2 |
| 11 | 1+30.1T+1.33e3T2 |
| 13 | 1+88.9T+2.19e3T2 |
| 17 | 1−4.73T+4.91e3T2 |
| 19 | 1−124.T+6.85e3T2 |
| 23 | 1+20.2T+1.21e4T2 |
| 29 | 1−134.T+2.43e4T2 |
| 31 | 1+2.03T+2.97e4T2 |
| 37 | 1−141.T+5.06e4T2 |
| 41 | 1−95.2T+6.89e4T2 |
| 43 | 1−298.T+7.95e4T2 |
| 47 | 1−129.T+1.03e5T2 |
| 53 | 1+388.T+1.48e5T2 |
| 59 | 1−838.T+2.05e5T2 |
| 61 | 1−389.T+2.26e5T2 |
| 67 | 1+697.T+3.00e5T2 |
| 71 | 1+523.T+3.57e5T2 |
| 73 | 1+66.4T+3.89e5T2 |
| 79 | 1+526.T+4.93e5T2 |
| 83 | 1+70.0T+5.71e5T2 |
| 89 | 1+9.27T+7.04e5T2 |
| 97 | 1−4.19T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.66747912724749068926902162729, −11.79893074117836167096462282323, −10.15260556784260160675500006575, −9.299588515353147946848677529713, −7.80654746831271593042501031114, −7.09604721812618398512756178251, −5.44703792870315317332294990853, −4.35182692936235663235571516144, −3.03801588927631623923327660640, −2.47221646828391902923246030735,
2.47221646828391902923246030735, 3.03801588927631623923327660640, 4.35182692936235663235571516144, 5.44703792870315317332294990853, 7.09604721812618398512756178251, 7.80654746831271593042501031114, 9.299588515353147946848677529713, 10.15260556784260160675500006575, 11.79893074117836167096462282323, 12.66747912724749068926902162729