Properties

Label 2-175-1.1-c3-0-22
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.53·2-s + 6.46·3-s + 12.5·4-s + 29.3·6-s + 7·7-s + 20.7·8-s + 14.8·9-s − 54.0·11-s + 81.2·12-s + 75.2·13-s + 31.7·14-s − 6.60·16-s − 71.2·17-s + 67.1·18-s − 65.5·19-s + 45.2·21-s − 245.·22-s + 125.·23-s + 133.·24-s + 341.·26-s − 78.8·27-s + 87.9·28-s + 190.·29-s − 193.·31-s − 195.·32-s − 349.·33-s − 323.·34-s + ⋯
L(s)  = 1  + 1.60·2-s + 1.24·3-s + 1.57·4-s + 1.99·6-s + 0.377·7-s + 0.915·8-s + 0.548·9-s − 1.48·11-s + 1.95·12-s + 1.60·13-s + 0.606·14-s − 0.103·16-s − 1.01·17-s + 0.879·18-s − 0.791·19-s + 0.470·21-s − 2.37·22-s + 1.13·23-s + 1.13·24-s + 2.57·26-s − 0.561·27-s + 0.593·28-s + 1.21·29-s − 1.11·31-s − 1.08·32-s − 1.84·33-s − 1.62·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.578535933\)
\(L(\frac12)\) \(\approx\) \(5.578535933\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 4.53T + 8T^{2} \)
3 \( 1 - 6.46T + 27T^{2} \)
11 \( 1 + 54.0T + 1.33e3T^{2} \)
13 \( 1 - 75.2T + 2.19e3T^{2} \)
17 \( 1 + 71.2T + 4.91e3T^{2} \)
19 \( 1 + 65.5T + 6.85e3T^{2} \)
23 \( 1 - 125.T + 1.21e4T^{2} \)
29 \( 1 - 190.T + 2.43e4T^{2} \)
31 \( 1 + 193.T + 2.97e4T^{2} \)
37 \( 1 - 114.T + 5.06e4T^{2} \)
41 \( 1 - 216.T + 6.89e4T^{2} \)
43 \( 1 + 413.T + 7.95e4T^{2} \)
47 \( 1 + 113.T + 1.03e5T^{2} \)
53 \( 1 - 584.T + 1.48e5T^{2} \)
59 \( 1 - 203.T + 2.05e5T^{2} \)
61 \( 1 + 162.T + 2.26e5T^{2} \)
67 \( 1 - 477.T + 3.00e5T^{2} \)
71 \( 1 - 822.T + 3.57e5T^{2} \)
73 \( 1 + 798.T + 3.89e5T^{2} \)
79 \( 1 + 468.T + 4.93e5T^{2} \)
83 \( 1 + 310.T + 5.71e5T^{2} \)
89 \( 1 - 1.31e3T + 7.04e5T^{2} \)
97 \( 1 + 1.31e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.97017088459868159344105925011, −11.37871698800871723495267751773, −10.65251369765450746865266285073, −8.899219253527067575976784179052, −8.175403184882903080748996781048, −6.80726410686641661075366091239, −5.54164302925718835969452471869, −4.35555967299759632105121181446, −3.22769768972743024602318358587, −2.24155708842840029686038122356, 2.24155708842840029686038122356, 3.22769768972743024602318358587, 4.35555967299759632105121181446, 5.54164302925718835969452471869, 6.80726410686641661075366091239, 8.175403184882903080748996781048, 8.899219253527067575976784179052, 10.65251369765450746865266285073, 11.37871698800871723495267751773, 12.97017088459868159344105925011

Graph of the $Z$-function along the critical line