L(s) = 1 | + 4.53·2-s + 6.46·3-s + 12.5·4-s + 29.3·6-s + 7·7-s + 20.7·8-s + 14.8·9-s − 54.0·11-s + 81.2·12-s + 75.2·13-s + 31.7·14-s − 6.60·16-s − 71.2·17-s + 67.1·18-s − 65.5·19-s + 45.2·21-s − 245.·22-s + 125.·23-s + 133.·24-s + 341.·26-s − 78.8·27-s + 87.9·28-s + 190.·29-s − 193.·31-s − 195.·32-s − 349.·33-s − 323.·34-s + ⋯ |
L(s) = 1 | + 1.60·2-s + 1.24·3-s + 1.57·4-s + 1.99·6-s + 0.377·7-s + 0.915·8-s + 0.548·9-s − 1.48·11-s + 1.95·12-s + 1.60·13-s + 0.606·14-s − 0.103·16-s − 1.01·17-s + 0.879·18-s − 0.791·19-s + 0.470·21-s − 2.37·22-s + 1.13·23-s + 1.13·24-s + 2.57·26-s − 0.561·27-s + 0.593·28-s + 1.21·29-s − 1.11·31-s − 1.08·32-s − 1.84·33-s − 1.62·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(5.578535933\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.578535933\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 - 7T \) |
good | 2 | \( 1 - 4.53T + 8T^{2} \) |
| 3 | \( 1 - 6.46T + 27T^{2} \) |
| 11 | \( 1 + 54.0T + 1.33e3T^{2} \) |
| 13 | \( 1 - 75.2T + 2.19e3T^{2} \) |
| 17 | \( 1 + 71.2T + 4.91e3T^{2} \) |
| 19 | \( 1 + 65.5T + 6.85e3T^{2} \) |
| 23 | \( 1 - 125.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 190.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 193.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 114.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 216.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 413.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 113.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 584.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 203.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 162.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 477.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 822.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 798.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 468.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 310.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.31e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.31e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.97017088459868159344105925011, −11.37871698800871723495267751773, −10.65251369765450746865266285073, −8.899219253527067575976784179052, −8.175403184882903080748996781048, −6.80726410686641661075366091239, −5.54164302925718835969452471869, −4.35555967299759632105121181446, −3.22769768972743024602318358587, −2.24155708842840029686038122356,
2.24155708842840029686038122356, 3.22769768972743024602318358587, 4.35555967299759632105121181446, 5.54164302925718835969452471869, 6.80726410686641661075366091239, 8.175403184882903080748996781048, 8.899219253527067575976784179052, 10.65251369765450746865266285073, 11.37871698800871723495267751773, 12.97017088459868159344105925011