Properties

Label 2-175-1.1-c3-0-18
Degree $2$
Conductor $175$
Sign $-1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.70·2-s + 5.70·3-s + 5.70·4-s − 21.1·6-s − 7·7-s + 8.50·8-s + 5.50·9-s − 60.0·11-s + 32.5·12-s − 0.387·13-s + 25.9·14-s − 77.1·16-s + 35.4·17-s − 20.3·18-s − 6.08·19-s − 39.9·21-s + 222.·22-s + 31.5·23-s + 48.5·24-s + 1.43·26-s − 122.·27-s − 39.9·28-s − 292.·29-s + 130.·31-s + 217.·32-s − 342.·33-s − 131.·34-s + ⋯
L(s)  = 1  − 1.30·2-s + 1.09·3-s + 0.712·4-s − 1.43·6-s − 0.377·7-s + 0.375·8-s + 0.203·9-s − 1.64·11-s + 0.782·12-s − 0.00826·13-s + 0.494·14-s − 1.20·16-s + 0.506·17-s − 0.266·18-s − 0.0735·19-s − 0.414·21-s + 2.15·22-s + 0.285·23-s + 0.412·24-s + 0.0108·26-s − 0.873·27-s − 0.269·28-s − 1.87·29-s + 0.754·31-s + 1.20·32-s − 1.80·33-s − 0.662·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 7T \)
good2 \( 1 + 3.70T + 8T^{2} \)
3 \( 1 - 5.70T + 27T^{2} \)
11 \( 1 + 60.0T + 1.33e3T^{2} \)
13 \( 1 + 0.387T + 2.19e3T^{2} \)
17 \( 1 - 35.4T + 4.91e3T^{2} \)
19 \( 1 + 6.08T + 6.85e3T^{2} \)
23 \( 1 - 31.5T + 1.21e4T^{2} \)
29 \( 1 + 292.T + 2.43e4T^{2} \)
31 \( 1 - 130.T + 2.97e4T^{2} \)
37 \( 1 + 219.T + 5.06e4T^{2} \)
41 \( 1 + 447.T + 6.89e4T^{2} \)
43 \( 1 + 210.T + 7.95e4T^{2} \)
47 \( 1 + 457.T + 1.03e5T^{2} \)
53 \( 1 + 144.T + 1.48e5T^{2} \)
59 \( 1 - 767.T + 2.05e5T^{2} \)
61 \( 1 - 667.T + 2.26e5T^{2} \)
67 \( 1 - 77.4T + 3.00e5T^{2} \)
71 \( 1 + 906.T + 3.57e5T^{2} \)
73 \( 1 - 1.02e3T + 3.89e5T^{2} \)
79 \( 1 + 690.T + 4.93e5T^{2} \)
83 \( 1 - 979.T + 5.71e5T^{2} \)
89 \( 1 + 910.T + 7.04e5T^{2} \)
97 \( 1 + 11.1T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41832470961225980992717063400, −10.27225130164580296470587129842, −9.676777644196231857586231896516, −8.573381728798433632334930724805, −8.030839375156797704516647440047, −7.08053852838920900218055868615, −5.24844023302266390233237627885, −3.34707444407198510518869819137, −2.05284208090969814397299941670, 0, 2.05284208090969814397299941670, 3.34707444407198510518869819137, 5.24844023302266390233237627885, 7.08053852838920900218055868615, 8.030839375156797704516647440047, 8.573381728798433632334930724805, 9.676777644196231857586231896516, 10.27225130164580296470587129842, 11.41832470961225980992717063400

Graph of the $Z$-function along the critical line