Properties

Label 2-175-1.1-c3-0-16
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.85·2-s + 8.98·3-s + 0.149·4-s + 25.6·6-s + 7·7-s − 22.4·8-s + 53.7·9-s + 37.4·11-s + 1.34·12-s + 3.96·13-s + 19.9·14-s − 65.1·16-s + 51.6·17-s + 153.·18-s + 25.9·19-s + 62.9·21-s + 106.·22-s − 173.·23-s − 201.·24-s + 11.3·26-s + 240.·27-s + 1.04·28-s − 245.·29-s − 172.·31-s − 6.76·32-s + 336.·33-s + 147.·34-s + ⋯
L(s)  = 1  + 1.00·2-s + 1.72·3-s + 0.0186·4-s + 1.74·6-s + 0.377·7-s − 0.990·8-s + 1.99·9-s + 1.02·11-s + 0.0323·12-s + 0.0845·13-s + 0.381·14-s − 1.01·16-s + 0.737·17-s + 2.01·18-s + 0.313·19-s + 0.653·21-s + 1.03·22-s − 1.57·23-s − 1.71·24-s + 0.0853·26-s + 1.71·27-s + 0.00706·28-s − 1.57·29-s − 0.996·31-s − 0.0373·32-s + 1.77·33-s + 0.744·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.493186617\)
\(L(\frac12)\) \(\approx\) \(4.493186617\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 - 2.85T + 8T^{2} \)
3 \( 1 - 8.98T + 27T^{2} \)
11 \( 1 - 37.4T + 1.33e3T^{2} \)
13 \( 1 - 3.96T + 2.19e3T^{2} \)
17 \( 1 - 51.6T + 4.91e3T^{2} \)
19 \( 1 - 25.9T + 6.85e3T^{2} \)
23 \( 1 + 173.T + 1.21e4T^{2} \)
29 \( 1 + 245.T + 2.43e4T^{2} \)
31 \( 1 + 172.T + 2.97e4T^{2} \)
37 \( 1 + 250.T + 5.06e4T^{2} \)
41 \( 1 + 48.8T + 6.89e4T^{2} \)
43 \( 1 + 143.T + 7.95e4T^{2} \)
47 \( 1 + 36.6T + 1.03e5T^{2} \)
53 \( 1 - 645.T + 1.48e5T^{2} \)
59 \( 1 - 395.T + 2.05e5T^{2} \)
61 \( 1 - 47.5T + 2.26e5T^{2} \)
67 \( 1 - 263.T + 3.00e5T^{2} \)
71 \( 1 + 268.T + 3.57e5T^{2} \)
73 \( 1 - 199.T + 3.89e5T^{2} \)
79 \( 1 - 473.T + 4.93e5T^{2} \)
83 \( 1 + 72.7T + 5.71e5T^{2} \)
89 \( 1 + 1.55e3T + 7.04e5T^{2} \)
97 \( 1 - 243.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58411933224681299530557588125, −11.66317539035239014119213332415, −9.929659195952259934395676874845, −9.103908550586317678082860196445, −8.275742481886569380199491130400, −7.12739191193035229811268624530, −5.57480610862120869494349536229, −4.03970826830660413026567865890, −3.48084514249849880594573415839, −1.93126585893252293239925424281, 1.93126585893252293239925424281, 3.48084514249849880594573415839, 4.03970826830660413026567865890, 5.57480610862120869494349536229, 7.12739191193035229811268624530, 8.275742481886569380199491130400, 9.103908550586317678082860196445, 9.929659195952259934395676874845, 11.66317539035239014119213332415, 12.58411933224681299530557588125

Graph of the $Z$-function along the critical line