Properties

Label 2-175-1.1-c3-0-1
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.87·2-s − 4.14·3-s + 15.7·4-s + 20.2·6-s + 7·7-s − 37.6·8-s − 9.78·9-s + 36.9·11-s − 65.2·12-s − 61.3·13-s − 34.1·14-s + 57.7·16-s − 44.8·17-s + 47.6·18-s − 139.·19-s − 29.0·21-s − 180.·22-s + 217.·23-s + 156.·24-s + 298.·26-s + 152.·27-s + 110.·28-s − 33.8·29-s + 124.·31-s + 20.2·32-s − 153.·33-s + 218.·34-s + ⋯
L(s)  = 1  − 1.72·2-s − 0.798·3-s + 1.96·4-s + 1.37·6-s + 0.377·7-s − 1.66·8-s − 0.362·9-s + 1.01·11-s − 1.57·12-s − 1.30·13-s − 0.651·14-s + 0.902·16-s − 0.639·17-s + 0.624·18-s − 1.68·19-s − 0.301·21-s − 1.74·22-s + 1.97·23-s + 1.33·24-s + 2.25·26-s + 1.08·27-s + 0.743·28-s − 0.216·29-s + 0.720·31-s + 0.111·32-s − 0.809·33-s + 1.10·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4498218665\)
\(L(\frac12)\) \(\approx\) \(0.4498218665\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - 7T \)
good2 \( 1 + 4.87T + 8T^{2} \)
3 \( 1 + 4.14T + 27T^{2} \)
11 \( 1 - 36.9T + 1.33e3T^{2} \)
13 \( 1 + 61.3T + 2.19e3T^{2} \)
17 \( 1 + 44.8T + 4.91e3T^{2} \)
19 \( 1 + 139.T + 6.85e3T^{2} \)
23 \( 1 - 217.T + 1.21e4T^{2} \)
29 \( 1 + 33.8T + 2.43e4T^{2} \)
31 \( 1 - 124.T + 2.97e4T^{2} \)
37 \( 1 - 237.T + 5.06e4T^{2} \)
41 \( 1 - 195.T + 6.89e4T^{2} \)
43 \( 1 + 343.T + 7.95e4T^{2} \)
47 \( 1 - 16.8T + 1.03e5T^{2} \)
53 \( 1 - 346.T + 1.48e5T^{2} \)
59 \( 1 - 135.T + 2.05e5T^{2} \)
61 \( 1 - 490.T + 2.26e5T^{2} \)
67 \( 1 - 477.T + 3.00e5T^{2} \)
71 \( 1 - 45.2T + 3.57e5T^{2} \)
73 \( 1 - 100.T + 3.89e5T^{2} \)
79 \( 1 - 880.T + 4.93e5T^{2} \)
83 \( 1 + 1.15e3T + 5.71e5T^{2} \)
89 \( 1 - 619.T + 7.04e5T^{2} \)
97 \( 1 + 231.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64934978324455580674199813994, −11.16507187163706810762463149406, −10.23480481457713935084036641040, −9.144812237966095274967300490558, −8.429265244943020136606864174468, −7.10616550582939354389033845745, −6.36718214091441989138308145914, −4.75291900840907077379129041318, −2.34807993234759205241945012857, −0.69264443033033582156816900062, 0.69264443033033582156816900062, 2.34807993234759205241945012857, 4.75291900840907077379129041318, 6.36718214091441989138308145914, 7.10616550582939354389033845745, 8.429265244943020136606864174468, 9.144812237966095274967300490558, 10.23480481457713935084036641040, 11.16507187163706810762463149406, 11.64934978324455580674199813994

Graph of the $Z$-function along the critical line