| L(s) = 1 | + 2.56·2-s − 1.56·3-s + 4.56·4-s − 4·6-s + 7-s + 6.56·8-s − 0.561·9-s − 1.56·11-s − 7.12·12-s − 0.438·13-s + 2.56·14-s + 7.68·16-s + 0.438·17-s − 1.43·18-s − 7.12·19-s − 1.56·21-s − 4·22-s − 3.12·23-s − 10.2·24-s − 1.12·26-s + 5.56·27-s + 4.56·28-s + 6.68·29-s + 6.56·32-s + 2.43·33-s + 1.12·34-s − 2.56·36-s + ⋯ |
| L(s) = 1 | + 1.81·2-s − 0.901·3-s + 2.28·4-s − 1.63·6-s + 0.377·7-s + 2.31·8-s − 0.187·9-s − 0.470·11-s − 2.05·12-s − 0.121·13-s + 0.684·14-s + 1.92·16-s + 0.106·17-s − 0.339·18-s − 1.63·19-s − 0.340·21-s − 0.852·22-s − 0.651·23-s − 2.09·24-s − 0.220·26-s + 1.07·27-s + 0.862·28-s + 1.24·29-s + 1.15·32-s + 0.424·33-s + 0.192·34-s − 0.426·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.288605673\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.288605673\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 - T \) |
| good | 2 | \( 1 - 2.56T + 2T^{2} \) |
| 3 | \( 1 + 1.56T + 3T^{2} \) |
| 11 | \( 1 + 1.56T + 11T^{2} \) |
| 13 | \( 1 + 0.438T + 13T^{2} \) |
| 17 | \( 1 - 0.438T + 17T^{2} \) |
| 19 | \( 1 + 7.12T + 19T^{2} \) |
| 23 | \( 1 + 3.12T + 23T^{2} \) |
| 29 | \( 1 - 6.68T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 - 5.12T + 41T^{2} \) |
| 43 | \( 1 + 0.876T + 43T^{2} \) |
| 47 | \( 1 - 8.68T + 47T^{2} \) |
| 53 | \( 1 - 5.12T + 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 - 15.3T + 61T^{2} \) |
| 67 | \( 1 + 10.2T + 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 - 12.2T + 73T^{2} \) |
| 79 | \( 1 + 2.43T + 79T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 + 1.12T + 89T^{2} \) |
| 97 | \( 1 + 5.80T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.55646609385647742569673743256, −12.06697266697366015342477064904, −11.06428082772425106631131180729, −10.43987269507722050786870420520, −8.350872339683596935884437162342, −6.88762105123055991046825995046, −5.98191221139294560470989433367, −5.12809227459835201107475780399, −4.12853276729786295782264898286, −2.47295612065667355217981384772,
2.47295612065667355217981384772, 4.12853276729786295782264898286, 5.12809227459835201107475780399, 5.98191221139294560470989433367, 6.88762105123055991046825995046, 8.350872339683596935884437162342, 10.43987269507722050786870420520, 11.06428082772425106631131180729, 12.06697266697366015342477064904, 12.55646609385647742569673743256