Properties

Label 2-175-1.1-c1-0-4
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s + 3.23·3-s − 1.61·4-s + 2.00·6-s − 7-s − 2.23·8-s + 7.47·9-s − 0.236·11-s − 5.23·12-s − 1.23·13-s − 0.618·14-s + 1.85·16-s − 2.47·17-s + 4.61·18-s − 4.47·19-s − 3.23·21-s − 0.145·22-s − 6.23·23-s − 7.23·24-s − 0.763·26-s + 14.4·27-s + 1.61·28-s + 5·29-s + 3.70·31-s + 5.61·32-s − 0.763·33-s − 1.52·34-s + ⋯
L(s)  = 1  + 0.437·2-s + 1.86·3-s − 0.809·4-s + 0.816·6-s − 0.377·7-s − 0.790·8-s + 2.49·9-s − 0.0711·11-s − 1.51·12-s − 0.342·13-s − 0.165·14-s + 0.463·16-s − 0.599·17-s + 1.08·18-s − 1.02·19-s − 0.706·21-s − 0.0311·22-s − 1.30·23-s − 1.47·24-s − 0.149·26-s + 2.78·27-s + 0.305·28-s + 0.928·29-s + 0.666·31-s + 0.993·32-s − 0.132·33-s − 0.262·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.916020976\)
\(L(\frac12)\) \(\approx\) \(1.916020976\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 - 0.618T + 2T^{2} \)
3 \( 1 - 3.23T + 3T^{2} \)
11 \( 1 + 0.236T + 11T^{2} \)
13 \( 1 + 1.23T + 13T^{2} \)
17 \( 1 + 2.47T + 17T^{2} \)
19 \( 1 + 4.47T + 19T^{2} \)
23 \( 1 + 6.23T + 23T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 - 3.70T + 31T^{2} \)
37 \( 1 + 3T + 37T^{2} \)
41 \( 1 - 4.76T + 41T^{2} \)
43 \( 1 + 1.76T + 43T^{2} \)
47 \( 1 - 2T + 47T^{2} \)
53 \( 1 + 8.47T + 53T^{2} \)
59 \( 1 - 11.7T + 59T^{2} \)
61 \( 1 + 9.70T + 61T^{2} \)
67 \( 1 - 4.23T + 67T^{2} \)
71 \( 1 - 8.70T + 71T^{2} \)
73 \( 1 - 8.76T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 - 7.70T + 83T^{2} \)
89 \( 1 - 17.2T + 89T^{2} \)
97 \( 1 + 5.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01110474154463579187197850579, −12.28420944512452191397895646469, −10.29640987970285833536666456832, −9.498905136339927425339439551313, −8.643314798444274129168571783166, −7.931270676336452752173931234973, −6.48470752154622427729117035079, −4.59952085184925284287560304256, −3.69334306737398303061109220387, −2.43635580827897145919702985945, 2.43635580827897145919702985945, 3.69334306737398303061109220387, 4.59952085184925284287560304256, 6.48470752154622427729117035079, 7.931270676336452752173931234973, 8.643314798444274129168571783166, 9.498905136339927425339439551313, 10.29640987970285833536666456832, 12.28420944512452191397895646469, 13.01110474154463579187197850579

Graph of the $Z$-function along the critical line