L(s) = 1 | − 2·2-s − 3-s + 2·4-s + 2·6-s + 7-s − 2·9-s − 3·11-s − 2·12-s − 13-s − 2·14-s − 4·16-s − 7·17-s + 4·18-s − 21-s + 6·22-s − 6·23-s + 2·26-s + 5·27-s + 2·28-s − 5·29-s + 2·31-s + 8·32-s + 3·33-s + 14·34-s − 4·36-s − 2·37-s + 39-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s + 0.377·7-s − 2/3·9-s − 0.904·11-s − 0.577·12-s − 0.277·13-s − 0.534·14-s − 16-s − 1.69·17-s + 0.942·18-s − 0.218·21-s + 1.27·22-s − 1.25·23-s + 0.392·26-s + 0.962·27-s + 0.377·28-s − 0.928·29-s + 0.359·31-s + 1.41·32-s + 0.522·33-s + 2.40·34-s − 2/3·36-s − 0.328·37-s + 0.160·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 2 | \( 1 + p T + p T^{2} \) |
| 3 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 + 3 T + p T^{2} \) |
| 13 | \( 1 + T + p T^{2} \) |
| 17 | \( 1 + 7 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 5 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 3 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 10 T + p T^{2} \) |
| 61 | \( 1 + 8 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 5 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 7 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74927591551527798543967455041, −10.99407496803787037929349988820, −10.28604192239361642576306157957, −9.098174271283233951402286060204, −8.274076028912949412078697949695, −7.30330020618146603033885123856, −5.99848698022791170310055133711, −4.63171310479474983768771180103, −2.25267400471040791170371820784, 0,
2.25267400471040791170371820784, 4.63171310479474983768771180103, 5.99848698022791170310055133711, 7.30330020618146603033885123856, 8.274076028912949412078697949695, 9.098174271283233951402286060204, 10.28604192239361642576306157957, 10.99407496803787037929349988820, 11.74927591551527798543967455041