Properties

Label 2-1740-1.1-c1-0-19
Degree $2$
Conductor $1740$
Sign $-1$
Analytic cond. $13.8939$
Root an. cond. $3.72746$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 3·7-s + 9-s − 3·11-s + 13-s + 15-s − 3·17-s − 6·19-s − 3·21-s − 4·23-s + 25-s + 27-s + 29-s − 4·31-s − 3·33-s − 3·35-s − 4·37-s + 39-s + 2·41-s + 4·43-s + 45-s − 3·47-s + 2·49-s − 3·51-s + 6·53-s − 3·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.13·7-s + 1/3·9-s − 0.904·11-s + 0.277·13-s + 0.258·15-s − 0.727·17-s − 1.37·19-s − 0.654·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s + 0.185·29-s − 0.718·31-s − 0.522·33-s − 0.507·35-s − 0.657·37-s + 0.160·39-s + 0.312·41-s + 0.609·43-s + 0.149·45-s − 0.437·47-s + 2/7·49-s − 0.420·51-s + 0.824·53-s − 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1740\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(13.8939\)
Root analytic conductor: \(3.72746\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1740,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
29 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 9 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 7 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.977772545976198663458639648741, −8.248029066882421296740697658734, −7.33548636345869317829741092214, −6.45094562380598595733597865632, −5.87968209883743333563161571072, −4.68670697707933784822821040344, −3.73949324550628996073299112294, −2.77551981441276545461339322850, −1.94725580514987939336132871333, 0, 1.94725580514987939336132871333, 2.77551981441276545461339322850, 3.73949324550628996073299112294, 4.68670697707933784822821040344, 5.87968209883743333563161571072, 6.45094562380598595733597865632, 7.33548636345869317829741092214, 8.248029066882421296740697658734, 8.977772545976198663458639648741

Graph of the $Z$-function along the critical line