Properties

Label 2-1725-5.4-c1-0-43
Degree $2$
Conductor $1725$
Sign $0.447 + 0.894i$
Analytic cond. $13.7741$
Root an. cond. $3.71136$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + i·3-s + 4-s + 6-s + 2i·7-s − 3i·8-s − 9-s + 4·11-s + i·12-s − 6i·13-s + 2·14-s − 16-s − 4i·17-s + i·18-s − 2·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.577i·3-s + 0.5·4-s + 0.408·6-s + 0.755i·7-s − 1.06i·8-s − 0.333·9-s + 1.20·11-s + 0.288i·12-s − 1.66i·13-s + 0.534·14-s − 0.250·16-s − 0.970i·17-s + 0.235i·18-s − 0.458·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1725\)    =    \(3 \cdot 5^{2} \cdot 23\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(13.7741\)
Root analytic conductor: \(3.71136\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1725} (1174, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1725,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.134971859\)
\(L(\frac12)\) \(\approx\) \(2.134971859\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - iT \)
5 \( 1 \)
23 \( 1 + iT \)
good2 \( 1 + iT - 2T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 6iT - 13T^{2} \)
17 \( 1 + 4iT - 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 10iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 + 12iT - 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 10iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 14iT - 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 - 16T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.417454879385253373474424084177, −8.589040329131168966166106550331, −7.68721855317698650630287436133, −6.65457617594089690359713068519, −5.93299524467769070122228550734, −5.02727829589196191750834264811, −3.90690624192849382584039561356, −3.07739387530587078474388351717, −2.31182557291014674616625267859, −0.858866595082527605210475615196, 1.37462194986124042147049610851, 2.20231908504507520786162751786, 3.72392062771303187982747713229, 4.47095842857512516853988855118, 5.80167725380005007568105735389, 6.51388362499070437883134406050, 6.92881675065301117980941161416, 7.63292403833841214754521716499, 8.579325015735999938114211440236, 9.150077253812395240023615614758

Graph of the $Z$-function along the critical line