Properties

Label 2-1710-5.4-c1-0-12
Degree $2$
Conductor $1710$
Sign $-0.447 - 0.894i$
Analytic cond. $13.6544$
Root an. cond. $3.69518$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + (−2 + i)5-s i·8-s + (−1 − 2i)10-s + 4·11-s − 4i·13-s + 16-s + 6i·17-s + 19-s + (2 − i)20-s + 4i·22-s + (3 − 4i)25-s + 4·26-s − 2·29-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + (−0.894 + 0.447i)5-s − 0.353i·8-s + (−0.316 − 0.632i)10-s + 1.20·11-s − 1.10i·13-s + 0.250·16-s + 1.45i·17-s + 0.229·19-s + (0.447 − 0.223i)20-s + 0.852i·22-s + (0.600 − 0.800i)25-s + 0.784·26-s − 0.371·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(13.6544\)
Root analytic conductor: \(3.69518\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1710} (1369, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.255632201\)
\(L(\frac12)\) \(\approx\) \(1.255632201\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 + (2 - i)T \)
19 \( 1 - T \)
good7 \( 1 - 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 - 6iT - 17T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 - 12T + 41T^{2} \)
43 \( 1 - 6iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 14iT - 53T^{2} \)
59 \( 1 + 10T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 - 8iT - 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 12iT - 83T^{2} \)
89 \( 1 + 8T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.374370911423795205274291342450, −8.647348584629239805046654344710, −7.83842740388649712558927411850, −7.36732610777691659276556120731, −6.30341858174313776356701208912, −5.85263583998635103419103169491, −4.50172493008255613495263289013, −3.87982933375635799366194039024, −2.94209847647220260044219177673, −1.13232696657335121694437892039, 0.58515639726989476720516646524, 1.81626712317735118204374675795, 3.13051187884498796533339256776, 4.08181108724219159152351296004, 4.58029228141831859332207397481, 5.66712805410295926267963157100, 6.88956734081434786106101238285, 7.46071392701930798830936154448, 8.535367432913759626836397428952, 9.292024342077516206329770052315

Graph of the $Z$-function along the critical line