L(s) = 1 | + (0.370 + 0.642i)2-s + (0.724 − 1.25i)4-s + (−1.65 − 2.85i)5-s + 1.44·7-s + 2.55·8-s + (1.22 − 2.12i)10-s − 1.81·11-s + (0.5 − 0.866i)13-s + (0.537 + 0.931i)14-s + (−0.499 − 0.866i)16-s + (3.30 + 5.71i)17-s + (1 + 4.24i)19-s − 4.78·20-s + (−0.674 − 1.16i)22-s + (−2.39 + 4.14i)23-s + ⋯ |
L(s) = 1 | + (0.262 + 0.454i)2-s + (0.362 − 0.627i)4-s + (−0.738 − 1.27i)5-s + 0.547·7-s + 0.904·8-s + (0.387 − 0.670i)10-s − 0.547·11-s + (0.138 − 0.240i)13-s + (0.143 + 0.248i)14-s + (−0.124 − 0.216i)16-s + (0.800 + 1.38i)17-s + (0.229 + 0.973i)19-s − 1.07·20-s + (−0.143 − 0.248i)22-s + (−0.498 + 0.864i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30199 - 0.335906i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30199 - 0.335906i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-1 - 4.24i)T \) |
good | 2 | \( 1 + (-0.370 - 0.642i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.65 + 2.85i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 1.44T + 7T^{2} \) |
| 11 | \( 1 + 1.81T + 11T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.30 - 5.71i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (2.39 - 4.14i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.78 + 8.28i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4.55T + 31T^{2} \) |
| 37 | \( 1 + 5.89T + 37T^{2} \) |
| 41 | \( 1 + (-1.48 - 2.57i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.17 - 7.22i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.48 - 2.57i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.65 + 2.85i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.21 - 7.29i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.17 + 12.4i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.78 + 8.28i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.5 + 4.33i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.17 - 12.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.63T + 83T^{2} \) |
| 89 | \( 1 + (8.25 - 14.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.44 + 11.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.65435616914855733321746547561, −11.82721118248572062434303083813, −10.72603439528761394181216488777, −9.709530677600590368108008012668, −8.128370173989520805560830389747, −7.82137486992859798254265091592, −6.02146487384392664345548551044, −5.17303939310479416255578736696, −4.03079140635165643282337794595, −1.45612952167493132635072227588,
2.56640660276347950610243771566, 3.52702508145343431196749731985, 4.96408746434452255443489704236, 6.95194580391858643449743756325, 7.40888691223807046524142213786, 8.585008781865755482982736275601, 10.30633156848426850857995880360, 11.06241651710061621332001288057, 11.70871198168229425769883712122, 12.58320390421066374102612759867