L(s) = 1 | + (−0.5 + 0.866i)4-s + 7-s + (−1.5 − 0.866i)13-s + (−0.499 − 0.866i)16-s − 19-s + (0.5 − 0.866i)25-s + (−0.5 + 0.866i)28-s + 1.73i·31-s − 1.73i·37-s + (0.5 + 0.866i)43-s + (1.5 − 0.866i)52-s + (−0.5 + 0.866i)61-s + 0.999·64-s + (1.5 + 0.866i)67-s + (0.5 + 0.866i)73-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)4-s + 7-s + (−1.5 − 0.866i)13-s + (−0.499 − 0.866i)16-s − 19-s + (0.5 − 0.866i)25-s + (−0.5 + 0.866i)28-s + 1.73i·31-s − 1.73i·37-s + (0.5 + 0.866i)43-s + (1.5 − 0.866i)52-s + (−0.5 + 0.866i)61-s + 0.999·64-s + (1.5 + 0.866i)67-s + (0.5 + 0.866i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6304655160\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6304655160\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - 1.73iT - T^{2} \) |
| 37 | \( 1 + 1.73iT - T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73573705344168905994537873131, −12.38075014513968022941096384101, −11.15249335626099394609718975711, −10.08883893701692750943633178570, −8.795959328665294891122447836875, −8.011942648320657675990551982060, −7.07924459627109291426730101132, −5.24356164546940634662966272452, −4.31033340971662668399967222435, −2.63790986835314549134060667019,
1.99711642451795237760160624628, 4.39128100654410986731420757842, 5.16022945266509770452414471560, 6.54876716174985039446258611077, 7.84292811375560711117310874498, 9.028213104045002098422859164893, 9.884622558268598699539722488447, 10.94297885429766782577005136686, 11.81911774978474639537295195387, 13.04513543539377093871444358350