L(s) = 1 | + (0.5 − 0.866i)2-s + (0.500 + 0.866i)4-s + 7-s + 3·8-s + 2·11-s + (−2.5 − 4.33i)13-s + (0.5 − 0.866i)14-s + (0.500 − 0.866i)16-s + (−2 + 3.46i)17-s + (−4 + 1.73i)19-s + (1 − 1.73i)22-s + (−2 − 3.46i)23-s + (2.5 + 4.33i)25-s − 5·26-s + (0.500 + 0.866i)28-s + (−4 − 6.92i)29-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.250 + 0.433i)4-s + 0.377·7-s + 1.06·8-s + 0.603·11-s + (−0.693 − 1.20i)13-s + (0.133 − 0.231i)14-s + (0.125 − 0.216i)16-s + (−0.485 + 0.840i)17-s + (−0.917 + 0.397i)19-s + (0.213 − 0.369i)22-s + (−0.417 − 0.722i)23-s + (0.5 + 0.866i)25-s − 0.980·26-s + (0.0944 + 0.163i)28-s + (−0.742 − 1.28i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48087 - 0.320057i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48087 - 0.320057i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (4 - 1.73i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - T + 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2 - 3.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (2 + 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4 + 6.92i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3T + 31T^{2} \) |
| 37 | \( 1 - 3T + 37T^{2} \) |
| 41 | \( 1 + (6 - 10.3i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 - 3.46i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5 + 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 - 11.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.5 + 9.52i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.72990820154975166673138353569, −11.73795319515122549705207836049, −10.89319498300486686465672884818, −9.991703005421745185780464941918, −8.465345632336524695421519797279, −7.63756970877524069298361787844, −6.30003152929570013923168302982, −4.73389840297896153033691600548, −3.55767824986701375675868417535, −2.05930157279150413425232928117,
1.98588800280289030643560997342, 4.26218036196311968434327440702, 5.25237231027046152650155683618, 6.62899897096283456553033020916, 7.22863667257789865628661188720, 8.739122200387657435331285421480, 9.770082112684664126323073126712, 10.99314825236889749223271038992, 11.72597041430198767534386264957, 13.00358723600296357930201328921