L(s) = 1 | + (−0.866 + 0.5i)2-s + i·3-s + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (−0.5 − 0.866i)7-s − i·8-s − 9-s − 0.999i·10-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + (0.866 + 0.499i)14-s + (−0.866 − 0.5i)15-s + (0.5 + 0.866i)16-s + (0.866 − 0.5i)18-s + i·19-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + i·3-s + (−0.5 + 0.866i)5-s + (−0.5 − 0.866i)6-s + (−0.5 − 0.866i)7-s − i·8-s − 9-s − 0.999i·10-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + (0.866 + 0.499i)14-s + (−0.866 − 0.5i)15-s + (0.5 + 0.866i)16-s + (0.866 − 0.5i)18-s + i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3799375747\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3799375747\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 19 | \( 1 - iT \) |
good | 2 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.53765669200239560920799691729, −12.18579858521529962424400026850, −10.95234448530257216624214282251, −10.20140067938159415834233222041, −9.401579418067524432331958793208, −8.336196475863634597614208489047, −7.20151037666662089677640548508, −6.37343530522119538900024165060, −4.23496781639815852337266858220, −3.50118570811506833453859075622,
1.13558389195596783823694363533, 2.99343008038472063889121925162, 5.25063307880484960493204905994, 6.29119669582383274707931373042, 7.88754360637046314271475907853, 8.837033921878308270395272134693, 9.109533802221884348670597627972, 10.87874465828559044037538146960, 11.59210384501217424320819093772, 12.50378611910378692433937388903