L(s) = 1 | + (0.353 − 0.296i)2-s + (0.726 − 1.57i)3-s + (−0.310 + 1.76i)4-s + (0.919 − 2.52i)5-s + (−0.209 − 0.770i)6-s + (2.00 + 3.47i)7-s + (0.873 + 1.51i)8-s + (−1.94 − 2.28i)9-s + (−0.423 − 1.16i)10-s − 3.58i·11-s + (2.54 + 1.76i)12-s + (−1.68 − 4.62i)13-s + (1.73 + 0.633i)14-s + (−3.30 − 3.28i)15-s + (−2.60 − 0.947i)16-s + (−2.40 + 6.59i)17-s + ⋯ |
L(s) = 1 | + (0.249 − 0.209i)2-s + (0.419 − 0.907i)3-s + (−0.155 + 0.880i)4-s + (0.411 − 1.12i)5-s + (−0.0854 − 0.314i)6-s + (0.758 + 1.31i)7-s + (0.308 + 0.534i)8-s + (−0.648 − 0.761i)9-s + (−0.134 − 0.368i)10-s − 1.08i·11-s + (0.733 + 0.510i)12-s + (−0.466 − 1.28i)13-s + (0.464 + 0.169i)14-s + (−0.853 − 0.847i)15-s + (−0.650 − 0.236i)16-s + (−0.582 + 1.60i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.721 + 0.692i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.721 + 0.692i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40799 - 0.566747i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40799 - 0.566747i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.726 + 1.57i)T \) |
| 19 | \( 1 + (0.557 - 4.32i)T \) |
good | 2 | \( 1 + (-0.353 + 0.296i)T + (0.347 - 1.96i)T^{2} \) |
| 5 | \( 1 + (-0.919 + 2.52i)T + (-3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (-2.00 - 3.47i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 3.58iT - 11T^{2} \) |
| 13 | \( 1 + (1.68 + 4.62i)T + (-9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (2.40 - 6.59i)T + (-13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (-2.11 - 0.372i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (0.213 - 1.21i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 - 4.02iT - 31T^{2} \) |
| 37 | \( 1 + 0.477iT - 37T^{2} \) |
| 41 | \( 1 + (-1.67 + 1.40i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (-0.397 - 2.25i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (5.61 + 0.989i)T + (44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + (2.30 + 1.93i)T + (9.20 + 52.1i)T^{2} \) |
| 59 | \( 1 + (1.51 + 8.59i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (7.98 - 2.90i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-6.88 + 8.21i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-0.839 + 0.704i)T + (12.3 - 69.9i)T^{2} \) |
| 73 | \( 1 + (-0.773 - 4.38i)T + (-68.5 + 24.9i)T^{2} \) |
| 79 | \( 1 + (-3.11 + 8.55i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-13.1 + 7.60i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.329 - 1.86i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (6.65 + 7.92i)T + (-16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.64063872673087767102411777812, −12.17003049599699152073475186147, −10.99807067673000720762029483442, −9.071287149176142342026759744693, −8.363657678044015554411833627514, −8.018452384047185341702029547478, −6.03960299997308637366386886598, −5.10904659379613554671416891903, −3.27529353631986578992390218731, −1.84986797407846334211864261520,
2.34148513782896097680561718056, 4.34343105052810336874253988176, 4.87551257174389426006864090165, 6.74190184174890705291490582360, 7.33776350670811612945004131160, 9.304003066660635703059527081540, 9.854579386328654951668261350578, 10.82508608263729507746476582204, 11.35661691867139929677021859598, 13.61548192789388251364369193279