L(s) = 1 | + (−0.507 + 0.425i)2-s + (−1.51 + 0.832i)3-s + (−0.271 + 1.53i)4-s + (−0.735 + 2.02i)5-s + (0.415 − 1.06i)6-s + (−2.31 − 4.01i)7-s + (−1.17 − 2.04i)8-s + (1.61 − 2.52i)9-s + (−0.486 − 1.33i)10-s + 2.38i·11-s + (−0.869 − 2.56i)12-s + (−0.598 − 1.64i)13-s + (2.88 + 1.04i)14-s + (−0.565 − 3.68i)15-s + (−1.46 − 0.534i)16-s + (−1.52 + 4.20i)17-s + ⋯ |
L(s) = 1 | + (−0.358 + 0.300i)2-s + (−0.876 + 0.480i)3-s + (−0.135 + 0.769i)4-s + (−0.328 + 0.903i)5-s + (0.169 − 0.436i)6-s + (−0.876 − 1.51i)7-s + (−0.416 − 0.721i)8-s + (0.537 − 0.843i)9-s + (−0.153 − 0.422i)10-s + 0.720i·11-s + (−0.250 − 0.739i)12-s + (−0.166 − 0.456i)13-s + (0.770 + 0.280i)14-s + (−0.146 − 0.950i)15-s + (−0.367 − 0.133i)16-s + (−0.371 + 1.01i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.904 + 0.427i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.904 + 0.427i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0500053 - 0.222898i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0500053 - 0.222898i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.51 - 0.832i)T \) |
| 19 | \( 1 + (3.09 - 3.06i)T \) |
good | 2 | \( 1 + (0.507 - 0.425i)T + (0.347 - 1.96i)T^{2} \) |
| 5 | \( 1 + (0.735 - 2.02i)T + (-3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (2.31 + 4.01i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 2.38iT - 11T^{2} \) |
| 13 | \( 1 + (0.598 + 1.64i)T + (-9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (1.52 - 4.20i)T + (-13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (5.67 + 1.00i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (1.13 - 6.45i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + 3.03iT - 31T^{2} \) |
| 37 | \( 1 + 6.49iT - 37T^{2} \) |
| 41 | \( 1 + (0.680 - 0.571i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (-1.88 - 10.6i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (8.21 + 1.44i)T + (44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + (-5.26 - 4.41i)T + (9.20 + 52.1i)T^{2} \) |
| 59 | \( 1 + (1.08 + 6.15i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (1.43 - 0.522i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-1.95 + 2.33i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-7.57 + 6.35i)T + (12.3 - 69.9i)T^{2} \) |
| 73 | \( 1 + (-1.89 - 10.7i)T + (-68.5 + 24.9i)T^{2} \) |
| 79 | \( 1 + (0.738 - 2.02i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (1.85 - 1.07i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (2.28 - 12.9i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (1.18 + 1.41i)T + (-16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.93649882728978345241883725867, −12.49888036511188828495790140909, −11.06236297966465128246099138387, −10.35973831774959224310904334797, −9.606410118675746914926104291026, −7.924214665502561586167553494714, −6.99782392273872621653525728876, −6.33173703629456925097304138492, −4.22151814174084544462584274388, −3.54272778296965021255165864660,
0.25279823951764698610183187067, 2.26236862352009489043170146650, 4.79729359279182828579037937103, 5.73470235034208979860838964373, 6.57159465357558938842514282628, 8.424969043100346360019137830876, 9.151899124117597079995959280684, 10.15362516113676484707830311690, 11.56680559836443583782472038750, 11.88217056001961975798302717561