L(s) = 1 | + (1.30 + 2.25i)2-s + (−1.17 − 1.27i)3-s + (−2.38 + 4.13i)4-s + 2.87·5-s + (1.34 − 4.30i)6-s + (−1.80 + 3.12i)7-s − 7.22·8-s + (−0.244 + 2.99i)9-s + (3.74 + 6.48i)10-s + (−0.154 + 0.267i)11-s + (8.07 − 1.81i)12-s + (2.73 − 4.74i)13-s − 9.38·14-s + (−3.37 − 3.66i)15-s + (−4.63 − 8.02i)16-s + (1.60 − 2.78i)17-s + ⋯ |
L(s) = 1 | + (0.920 + 1.59i)2-s + (−0.677 − 0.735i)3-s + (−1.19 + 2.06i)4-s + 1.28·5-s + (0.548 − 1.75i)6-s + (−0.681 + 1.17i)7-s − 2.55·8-s + (−0.0814 + 0.996i)9-s + (1.18 + 2.05i)10-s + (−0.0466 + 0.0807i)11-s + (2.33 − 0.523i)12-s + (0.759 − 1.31i)13-s − 2.50·14-s + (−0.872 − 0.946i)15-s + (−1.15 − 2.00i)16-s + (0.389 − 0.674i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.488 - 0.872i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.488 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.778345 + 1.32817i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.778345 + 1.32817i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.17 + 1.27i)T \) |
| 19 | \( 1 + (-2.06 + 3.83i)T \) |
good | 2 | \( 1 + (-1.30 - 2.25i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 2.87T + 5T^{2} \) |
| 7 | \( 1 + (1.80 - 3.12i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.154 - 0.267i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.73 + 4.74i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.60 + 2.78i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.598 - 1.03i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.08T + 29T^{2} \) |
| 31 | \( 1 + (0.960 + 1.66i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 8.85T + 37T^{2} \) |
| 41 | \( 1 + 8.37T + 41T^{2} \) |
| 43 | \( 1 + (-0.880 - 1.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 0.974T + 47T^{2} \) |
| 53 | \( 1 + (2.22 + 3.85i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 0.263T + 59T^{2} \) |
| 61 | \( 1 - 2.25T + 61T^{2} \) |
| 67 | \( 1 + (0.917 - 1.58i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.72 - 9.91i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.24 - 5.62i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.50 + 7.80i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.71 + 2.97i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.421 + 0.730i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.72 - 6.44i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.13519240229059940933283919574, −12.78451206051420788338311027231, −11.56522223072228517373648533090, −9.812494805806824303940122463486, −8.665894109672700881075715344067, −7.49736196204761407306671401594, −6.35844502688990793226387162891, −5.74317909738539487064497225066, −5.19967729489138110659717017446, −2.86627143980008605040583113844,
1.49300890162620344922603698178, 3.47064560764950852815086676513, 4.31673891053015238128154977693, 5.66491073269521825991006743103, 6.43991219400224755152094624049, 9.242670799677024899356793958554, 9.938887254725025192320544850498, 10.49148824495436373598232020082, 11.34435475415028907750500965074, 12.38792365015181966417420960374