L(s) = 1 | + (0.0973 + 0.168i)2-s + (1.55 + 0.767i)3-s + (0.981 − 1.69i)4-s − 1.90·5-s + (0.0217 + 0.336i)6-s + (1.69 − 2.93i)7-s + 0.771·8-s + (1.82 + 2.38i)9-s + (−0.185 − 0.321i)10-s + (−0.311 + 0.539i)11-s + (2.82 − 1.88i)12-s + (−1.84 + 3.19i)13-s + 0.659·14-s + (−2.95 − 1.46i)15-s + (−1.88 − 3.26i)16-s + (−3.04 + 5.27i)17-s + ⋯ |
L(s) = 1 | + (0.0688 + 0.119i)2-s + (0.896 + 0.443i)3-s + (0.490 − 0.849i)4-s − 0.852·5-s + (0.00886 + 0.137i)6-s + (0.640 − 1.10i)7-s + 0.272·8-s + (0.607 + 0.794i)9-s + (−0.0586 − 0.101i)10-s + (−0.0939 + 0.162i)11-s + (0.816 − 0.544i)12-s + (−0.511 + 0.886i)13-s + 0.176·14-s + (−0.763 − 0.377i)15-s + (−0.471 − 0.817i)16-s + (−0.739 + 1.28i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.54249 - 0.0760145i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.54249 - 0.0760145i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.55 - 0.767i)T \) |
| 19 | \( 1 + (1.14 - 4.20i)T \) |
good | 2 | \( 1 + (-0.0973 - 0.168i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 1.90T + 5T^{2} \) |
| 7 | \( 1 + (-1.69 + 2.93i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.311 - 0.539i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.84 - 3.19i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.04 - 5.27i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-3.92 + 6.79i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 1.18T + 29T^{2} \) |
| 31 | \( 1 + (0.910 + 1.57i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.63T + 37T^{2} \) |
| 41 | \( 1 + 4.03T + 41T^{2} \) |
| 43 | \( 1 + (2.54 + 4.41i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 12.8T + 47T^{2} \) |
| 53 | \( 1 + (-1.93 - 3.34i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 8.50T + 59T^{2} \) |
| 61 | \( 1 - 3.64T + 61T^{2} \) |
| 67 | \( 1 + (0.523 - 0.905i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.56 + 2.70i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.06 + 3.58i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-8.16 - 14.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.35 + 9.27i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (5.25 + 9.09i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.34 + 12.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.92187125135635673090444783581, −11.46342756842210731406295119047, −10.66314899808795755620839610989, −9.932106718302559886444197897500, −8.529787757656278665377268428797, −7.61434239699065937296963213000, −6.64359672580377016738176872996, −4.72245160522546396476182276409, −3.96298076877935474919810884192, −1.93111397602633566881154949789,
2.38755040236041694754207931308, 3.34859675423606723252733043629, 4.95352981339171122747367045196, 6.89024995917755070337244159088, 7.75229203216001470271079014632, 8.442252834254829188668519418033, 9.426969491971795461826356873279, 11.37400414603056887289450513294, 11.68121303362098467914217899267, 12.80433009405665120657182920649