L(s) = 1 | + 2.71·2-s + 5.37·4-s − 3.22·5-s − 2.37·7-s + 9.15·8-s − 8.74·10-s − 2.20·11-s + 2·13-s − 6.44·14-s + 14.1·16-s − 3.22·17-s + 19-s − 17.3·20-s − 5.99·22-s + 1.01·23-s + 5.37·25-s + 5.43·26-s − 12.7·28-s + 1.01·29-s + 4.74·31-s + 20.0·32-s − 8.74·34-s + 7.64·35-s + 10.7·37-s + 2.71·38-s − 29.4·40-s − 5.43·41-s + ⋯ |
L(s) = 1 | + 1.91·2-s + 2.68·4-s − 1.44·5-s − 0.896·7-s + 3.23·8-s − 2.76·10-s − 0.666·11-s + 0.554·13-s − 1.72·14-s + 3.52·16-s − 0.781·17-s + 0.229·19-s − 3.86·20-s − 1.27·22-s + 0.210·23-s + 1.07·25-s + 1.06·26-s − 2.40·28-s + 0.187·29-s + 0.852·31-s + 3.53·32-s − 1.49·34-s + 1.29·35-s + 1.76·37-s + 0.440·38-s − 4.66·40-s − 0.848·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.561307286\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.561307286\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 - 2.71T + 2T^{2} \) |
| 5 | \( 1 + 3.22T + 5T^{2} \) |
| 7 | \( 1 + 2.37T + 7T^{2} \) |
| 11 | \( 1 + 2.20T + 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + 3.22T + 17T^{2} \) |
| 23 | \( 1 - 1.01T + 23T^{2} \) |
| 29 | \( 1 - 1.01T + 29T^{2} \) |
| 31 | \( 1 - 4.74T + 31T^{2} \) |
| 37 | \( 1 - 10.7T + 37T^{2} \) |
| 41 | \( 1 + 5.43T + 41T^{2} \) |
| 43 | \( 1 + 11.1T + 43T^{2} \) |
| 47 | \( 1 + 4.23T + 47T^{2} \) |
| 53 | \( 1 - 9.84T + 53T^{2} \) |
| 59 | \( 1 - 10.8T + 59T^{2} \) |
| 61 | \( 1 + 5.11T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 - 2.02T + 71T^{2} \) |
| 73 | \( 1 + 5.11T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 11.8T + 83T^{2} \) |
| 89 | \( 1 - 9.84T + 89T^{2} \) |
| 97 | \( 1 - 7.48T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.04183876456383678813676835786, −11.87074489719162000192938990034, −11.38999826050231165427198056276, −10.27061200076407566688849681077, −8.238365858967256567168450837137, −7.13413028488371389295620299903, −6.24144539861494707311207896767, −4.84767825282947347246593092996, −3.84105804025055284632284483666, −2.89216736885056807339606496549,
2.89216736885056807339606496549, 3.84105804025055284632284483666, 4.84767825282947347246593092996, 6.24144539861494707311207896767, 7.13413028488371389295620299903, 8.238365858967256567168450837137, 10.27061200076407566688849681077, 11.38999826050231165427198056276, 11.87074489719162000192938990034, 13.04183876456383678813676835786