Properties

Label 2-171-1.1-c1-0-6
Degree $2$
Conductor $171$
Sign $1$
Analytic cond. $1.36544$
Root an. cond. $1.16852$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.71·2-s + 5.37·4-s − 3.22·5-s − 2.37·7-s + 9.15·8-s − 8.74·10-s − 2.20·11-s + 2·13-s − 6.44·14-s + 14.1·16-s − 3.22·17-s + 19-s − 17.3·20-s − 5.99·22-s + 1.01·23-s + 5.37·25-s + 5.43·26-s − 12.7·28-s + 1.01·29-s + 4.74·31-s + 20.0·32-s − 8.74·34-s + 7.64·35-s + 10.7·37-s + 2.71·38-s − 29.4·40-s − 5.43·41-s + ⋯
L(s)  = 1  + 1.91·2-s + 2.68·4-s − 1.44·5-s − 0.896·7-s + 3.23·8-s − 2.76·10-s − 0.666·11-s + 0.554·13-s − 1.72·14-s + 3.52·16-s − 0.781·17-s + 0.229·19-s − 3.86·20-s − 1.27·22-s + 0.210·23-s + 1.07·25-s + 1.06·26-s − 2.40·28-s + 0.187·29-s + 0.852·31-s + 3.53·32-s − 1.49·34-s + 1.29·35-s + 1.76·37-s + 0.440·38-s − 4.66·40-s − 0.848·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(171\)    =    \(3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1.36544\)
Root analytic conductor: \(1.16852\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 171,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.561307286\)
\(L(\frac12)\) \(\approx\) \(2.561307286\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 2.71T + 2T^{2} \)
5 \( 1 + 3.22T + 5T^{2} \)
7 \( 1 + 2.37T + 7T^{2} \)
11 \( 1 + 2.20T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + 3.22T + 17T^{2} \)
23 \( 1 - 1.01T + 23T^{2} \)
29 \( 1 - 1.01T + 29T^{2} \)
31 \( 1 - 4.74T + 31T^{2} \)
37 \( 1 - 10.7T + 37T^{2} \)
41 \( 1 + 5.43T + 41T^{2} \)
43 \( 1 + 11.1T + 43T^{2} \)
47 \( 1 + 4.23T + 47T^{2} \)
53 \( 1 - 9.84T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 + 5.11T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 2.02T + 71T^{2} \)
73 \( 1 + 5.11T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 11.8T + 83T^{2} \)
89 \( 1 - 9.84T + 89T^{2} \)
97 \( 1 - 7.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04183876456383678813676835786, −11.87074489719162000192938990034, −11.38999826050231165427198056276, −10.27061200076407566688849681077, −8.238365858967256567168450837137, −7.13413028488371389295620299903, −6.24144539861494707311207896767, −4.84767825282947347246593092996, −3.84105804025055284632284483666, −2.89216736885056807339606496549, 2.89216736885056807339606496549, 3.84105804025055284632284483666, 4.84767825282947347246593092996, 6.24144539861494707311207896767, 7.13413028488371389295620299903, 8.238365858967256567168450837137, 10.27061200076407566688849681077, 11.38999826050231165427198056276, 11.87074489719162000192938990034, 13.04183876456383678813676835786

Graph of the $Z$-function along the critical line