Properties

Label 2-171-1.1-c1-0-2
Degree $2$
Conductor $171$
Sign $1$
Analytic cond. $1.36544$
Root an. cond. $1.16852$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 2·5-s + 3·8-s − 2·10-s + 6·13-s − 16-s + 6·17-s − 19-s − 2·20-s − 4·23-s − 25-s − 6·26-s − 2·29-s + 8·31-s − 5·32-s − 6·34-s − 10·37-s + 38-s + 6·40-s + 2·41-s − 4·43-s + 4·46-s − 12·47-s − 7·49-s + 50-s − 6·52-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.894·5-s + 1.06·8-s − 0.632·10-s + 1.66·13-s − 1/4·16-s + 1.45·17-s − 0.229·19-s − 0.447·20-s − 0.834·23-s − 1/5·25-s − 1.17·26-s − 0.371·29-s + 1.43·31-s − 0.883·32-s − 1.02·34-s − 1.64·37-s + 0.162·38-s + 0.948·40-s + 0.312·41-s − 0.609·43-s + 0.589·46-s − 1.75·47-s − 49-s + 0.141·50-s − 0.832·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(171\)    =    \(3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1.36544\)
Root analytic conductor: \(1.16852\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 171,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8683613404\)
\(L(\frac12)\) \(\approx\) \(0.8683613404\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + T + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98289657399495306851456072162, −11.63017134596575611070760390300, −10.33061644135141849320149848866, −9.849882478281281439722427012273, −8.700339636508216566718463872719, −7.962026255736907116683171399764, −6.37820814688737049661034336254, −5.30285359031178015236684552035, −3.69904169102384607719527879903, −1.48488050469889056862198933364, 1.48488050469889056862198933364, 3.69904169102384607719527879903, 5.30285359031178015236684552035, 6.37820814688737049661034336254, 7.962026255736907116683171399764, 8.700339636508216566718463872719, 9.849882478281281439722427012273, 10.33061644135141849320149848866, 11.63017134596575611070760390300, 12.98289657399495306851456072162

Graph of the $Z$-function along the critical line