Properties

Label 2-171-1.1-c1-0-0
Degree $2$
Conductor $171$
Sign $1$
Analytic cond. $1.36544$
Root an. cond. $1.16852$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.27·2-s − 0.372·4-s − 2.15·5-s + 3.37·7-s + 3.02·8-s + 2.74·10-s + 4.70·11-s + 2·13-s − 4.30·14-s − 3.11·16-s − 2.15·17-s + 19-s + 0.800·20-s − 6·22-s + 6.85·23-s − 0.372·25-s − 2.55·26-s − 1.25·28-s + 6.85·29-s − 6.74·31-s − 2.07·32-s + 2.74·34-s − 7.25·35-s − 0.744·37-s − 1.27·38-s − 6.51·40-s + 2.55·41-s + ⋯
L(s)  = 1  − 0.902·2-s − 0.186·4-s − 0.962·5-s + 1.27·7-s + 1.07·8-s + 0.867·10-s + 1.41·11-s + 0.554·13-s − 1.14·14-s − 0.779·16-s − 0.521·17-s + 0.229·19-s + 0.179·20-s − 1.27·22-s + 1.42·23-s − 0.0744·25-s − 0.500·26-s − 0.237·28-s + 1.27·29-s − 1.21·31-s − 0.367·32-s + 0.470·34-s − 1.22·35-s − 0.122·37-s − 0.206·38-s − 1.02·40-s + 0.398·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(171\)    =    \(3^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1.36544\)
Root analytic conductor: \(1.16852\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 171,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7018300825\)
\(L(\frac12)\) \(\approx\) \(0.7018300825\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + 1.27T + 2T^{2} \)
5 \( 1 + 2.15T + 5T^{2} \)
7 \( 1 - 3.37T + 7T^{2} \)
11 \( 1 - 4.70T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + 2.15T + 17T^{2} \)
23 \( 1 - 6.85T + 23T^{2} \)
29 \( 1 - 6.85T + 29T^{2} \)
31 \( 1 + 6.74T + 31T^{2} \)
37 \( 1 + 0.744T + 37T^{2} \)
41 \( 1 - 2.55T + 41T^{2} \)
43 \( 1 - 6.11T + 43T^{2} \)
47 \( 1 + 9.00T + 47T^{2} \)
53 \( 1 + 11.9T + 53T^{2} \)
59 \( 1 + 5.10T + 59T^{2} \)
61 \( 1 - 12.1T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 13.7T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 1.75T + 83T^{2} \)
89 \( 1 + 11.9T + 89T^{2} \)
97 \( 1 + 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57973446366898195303573020623, −11.28589696541044753193091018029, −11.06929222962951072233390464991, −9.467009835347109289330769919732, −8.630562377894691369168399485594, −7.912645032383866039993596943648, −6.83399802090623178750631413357, −4.89160380111197809870492105361, −3.91383147461942667065062440632, −1.30530567998867654837094794576, 1.30530567998867654837094794576, 3.91383147461942667065062440632, 4.89160380111197809870492105361, 6.83399802090623178750631413357, 7.912645032383866039993596943648, 8.630562377894691369168399485594, 9.467009835347109289330769919732, 11.06929222962951072233390464991, 11.28589696541044753193091018029, 12.57973446366898195303573020623

Graph of the $Z$-function along the critical line