L(s) = 1 | − 1.27·2-s − 0.372·4-s − 2.15·5-s + 3.37·7-s + 3.02·8-s + 2.74·10-s + 4.70·11-s + 2·13-s − 4.30·14-s − 3.11·16-s − 2.15·17-s + 19-s + 0.800·20-s − 6·22-s + 6.85·23-s − 0.372·25-s − 2.55·26-s − 1.25·28-s + 6.85·29-s − 6.74·31-s − 2.07·32-s + 2.74·34-s − 7.25·35-s − 0.744·37-s − 1.27·38-s − 6.51·40-s + 2.55·41-s + ⋯ |
L(s) = 1 | − 0.902·2-s − 0.186·4-s − 0.962·5-s + 1.27·7-s + 1.07·8-s + 0.867·10-s + 1.41·11-s + 0.554·13-s − 1.14·14-s − 0.779·16-s − 0.521·17-s + 0.229·19-s + 0.179·20-s − 1.27·22-s + 1.42·23-s − 0.0744·25-s − 0.500·26-s − 0.237·28-s + 1.27·29-s − 1.21·31-s − 0.367·32-s + 0.470·34-s − 1.22·35-s − 0.122·37-s − 0.206·38-s − 1.02·40-s + 0.398·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7018300825\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7018300825\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 + 1.27T + 2T^{2} \) |
| 5 | \( 1 + 2.15T + 5T^{2} \) |
| 7 | \( 1 - 3.37T + 7T^{2} \) |
| 11 | \( 1 - 4.70T + 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 + 2.15T + 17T^{2} \) |
| 23 | \( 1 - 6.85T + 23T^{2} \) |
| 29 | \( 1 - 6.85T + 29T^{2} \) |
| 31 | \( 1 + 6.74T + 31T^{2} \) |
| 37 | \( 1 + 0.744T + 37T^{2} \) |
| 41 | \( 1 - 2.55T + 41T^{2} \) |
| 43 | \( 1 - 6.11T + 43T^{2} \) |
| 47 | \( 1 + 9.00T + 47T^{2} \) |
| 53 | \( 1 + 11.9T + 53T^{2} \) |
| 59 | \( 1 + 5.10T + 59T^{2} \) |
| 61 | \( 1 - 12.1T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 - 13.7T + 71T^{2} \) |
| 73 | \( 1 - 12.1T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 1.75T + 83T^{2} \) |
| 89 | \( 1 + 11.9T + 89T^{2} \) |
| 97 | \( 1 + 15.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.57973446366898195303573020623, −11.28589696541044753193091018029, −11.06929222962951072233390464991, −9.467009835347109289330769919732, −8.630562377894691369168399485594, −7.912645032383866039993596943648, −6.83399802090623178750631413357, −4.89160380111197809870492105361, −3.91383147461942667065062440632, −1.30530567998867654837094794576,
1.30530567998867654837094794576, 3.91383147461942667065062440632, 4.89160380111197809870492105361, 6.83399802090623178750631413357, 7.912645032383866039993596943648, 8.630562377894691369168399485594, 9.467009835347109289330769919732, 11.06929222962951072233390464991, 11.28589696541044753193091018029, 12.57973446366898195303573020623