Properties

Label 2-17-17.11-c2-0-1
Degree $2$
Conductor $17$
Sign $-0.250 + 0.968i$
Analytic cond. $0.463216$
Root an. cond. $0.680600$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.23 − 1.33i)2-s + (−0.783 − 3.93i)3-s + (5.81 + 5.81i)4-s + (0.268 + 0.179i)5-s + (−2.73 + 13.7i)6-s + (5.55 − 3.71i)7-s + (−5.65 − 13.6i)8-s + (−6.57 + 2.72i)9-s + (−0.627 − 0.939i)10-s + (5.27 + 1.04i)11-s + (18.3 − 27.4i)12-s + (−12.1 + 12.1i)13-s + (−22.9 + 4.56i)14-s + (0.496 − 1.19i)15-s + 18.7i·16-s + (15.7 + 6.50i)17-s + ⋯
L(s)  = 1  + (−1.61 − 0.669i)2-s + (−0.261 − 1.31i)3-s + (1.45 + 1.45i)4-s + (0.0537 + 0.0359i)5-s + (−0.456 + 2.29i)6-s + (0.794 − 0.530i)7-s + (−0.706 − 1.70i)8-s + (−0.730 + 0.302i)9-s + (−0.0627 − 0.0939i)10-s + (0.479 + 0.0953i)11-s + (1.52 − 2.28i)12-s + (−0.934 + 0.934i)13-s + (−1.63 + 0.325i)14-s + (0.0331 − 0.0799i)15-s + 1.17i·16-s + (0.923 + 0.382i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.250 + 0.968i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.250 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17\)
Sign: $-0.250 + 0.968i$
Analytic conductor: \(0.463216\)
Root analytic conductor: \(0.680600\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{17} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 17,\ (\ :1),\ -0.250 + 0.968i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.261096 - 0.337182i\)
\(L(\frac12)\) \(\approx\) \(0.261096 - 0.337182i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 + (-15.7 - 6.50i)T \)
good2 \( 1 + (3.23 + 1.33i)T + (2.82 + 2.82i)T^{2} \)
3 \( 1 + (0.783 + 3.93i)T + (-8.31 + 3.44i)T^{2} \)
5 \( 1 + (-0.268 - 0.179i)T + (9.56 + 23.0i)T^{2} \)
7 \( 1 + (-5.55 + 3.71i)T + (18.7 - 45.2i)T^{2} \)
11 \( 1 + (-5.27 - 1.04i)T + (111. + 46.3i)T^{2} \)
13 \( 1 + (12.1 - 12.1i)T - 169iT^{2} \)
19 \( 1 + (-9.69 - 4.01i)T + (255. + 255. i)T^{2} \)
23 \( 1 + (1.90 - 9.56i)T + (-488. - 202. i)T^{2} \)
29 \( 1 + (21.5 - 32.2i)T + (-321. - 776. i)T^{2} \)
31 \( 1 + (-17.4 + 3.47i)T + (887. - 367. i)T^{2} \)
37 \( 1 + (-3.17 - 15.9i)T + (-1.26e3 + 523. i)T^{2} \)
41 \( 1 + (-11.1 + 7.43i)T + (643. - 1.55e3i)T^{2} \)
43 \( 1 + (57.3 - 23.7i)T + (1.30e3 - 1.30e3i)T^{2} \)
47 \( 1 + (-23.9 + 23.9i)T - 2.20e3iT^{2} \)
53 \( 1 + (17.1 + 7.11i)T + (1.98e3 + 1.98e3i)T^{2} \)
59 \( 1 + (33.8 + 81.7i)T + (-2.46e3 + 2.46e3i)T^{2} \)
61 \( 1 + (-36.8 - 55.1i)T + (-1.42e3 + 3.43e3i)T^{2} \)
67 \( 1 + 24.8iT - 4.48e3T^{2} \)
71 \( 1 + (-2.55 - 12.8i)T + (-4.65e3 + 1.92e3i)T^{2} \)
73 \( 1 + (-64.3 - 43.0i)T + (2.03e3 + 4.92e3i)T^{2} \)
79 \( 1 + (94.8 + 18.8i)T + (5.76e3 + 2.38e3i)T^{2} \)
83 \( 1 + (11.4 - 27.6i)T + (-4.87e3 - 4.87e3i)T^{2} \)
89 \( 1 + (-12.6 - 12.6i)T + 7.92e3iT^{2} \)
97 \( 1 + (-19.6 + 29.3i)T + (-3.60e3 - 8.69e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.41937942185387413293903838138, −17.48116627125057579123384309554, −16.69806869613767616091702009159, −14.18957761202667083016975392068, −12.29481679610616864042980698138, −11.45458084085890860464998728999, −9.826565924060754714830581117875, −8.050495860723100125927459061493, −7.03375733370396620176314312845, −1.57473095095843119857374504030, 5.41676655484049095376765873050, 7.75971450553694670606486963475, 9.285770438807415051262676380522, 10.20038787692001061512764155446, 11.54682955690271112269840902675, 14.77731447320012769023750783438, 15.52572184968351185055295866148, 16.73497563853248727845058356743, 17.51308853649557702801537810229, 18.78864196516266003171917231546

Graph of the $Z$-function along the critical line