Properties

Label 2-1690-1.1-c1-0-36
Degree $2$
Conductor $1690$
Sign $1$
Analytic cond. $13.4947$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.23·3-s + 4-s + 5-s + 2.23·6-s + 1.43·7-s + 8-s + 2.00·9-s + 10-s + 0.315·11-s + 2.23·12-s + 1.43·14-s + 2.23·15-s + 16-s − 1.69·17-s + 2.00·18-s + 5.83·19-s + 20-s + 3.20·21-s + 0.315·22-s − 9.32·23-s + 2.23·24-s + 25-s − 2.22·27-s + 1.43·28-s + 7.09·29-s + 2.23·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.29·3-s + 0.5·4-s + 0.447·5-s + 0.913·6-s + 0.541·7-s + 0.353·8-s + 0.668·9-s + 0.316·10-s + 0.0952·11-s + 0.645·12-s + 0.382·14-s + 0.577·15-s + 0.250·16-s − 0.412·17-s + 0.472·18-s + 1.33·19-s + 0.223·20-s + 0.699·21-s + 0.0673·22-s − 1.94·23-s + 0.456·24-s + 0.200·25-s − 0.428·27-s + 0.270·28-s + 1.31·29-s + 0.408·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1690\)    =    \(2 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(13.4947\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1690,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.699464452\)
\(L(\frac12)\) \(\approx\) \(4.699464452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2.23T + 3T^{2} \)
7 \( 1 - 1.43T + 7T^{2} \)
11 \( 1 - 0.315T + 11T^{2} \)
17 \( 1 + 1.69T + 17T^{2} \)
19 \( 1 - 5.83T + 19T^{2} \)
23 \( 1 + 9.32T + 23T^{2} \)
29 \( 1 - 7.09T + 29T^{2} \)
31 \( 1 - 4.69T + 31T^{2} \)
37 \( 1 + 11.6T + 37T^{2} \)
41 \( 1 - 2.79T + 41T^{2} \)
43 \( 1 + 4.77T + 43T^{2} \)
47 \( 1 - 10.4T + 47T^{2} \)
53 \( 1 + 1.48T + 53T^{2} \)
59 \( 1 + 3.93T + 59T^{2} \)
61 \( 1 - 0.971T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 - 4.17T + 71T^{2} \)
73 \( 1 - 8.83T + 73T^{2} \)
79 \( 1 + 6.80T + 79T^{2} \)
83 \( 1 - 11.1T + 83T^{2} \)
89 \( 1 - 1.48T + 89T^{2} \)
97 \( 1 + 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.310468318302112658863737197982, −8.399997676157438479567152903418, −7.909067424080073954303005310281, −6.99509693743342865015461071128, −6.05461984475999528184383191792, −5.14252606370394161741627106541, −4.21880150109581798059492709070, −3.31704446082763327899016019653, −2.46964067366439353107585936420, −1.57786949822264456736851835422, 1.57786949822264456736851835422, 2.46964067366439353107585936420, 3.31704446082763327899016019653, 4.21880150109581798059492709070, 5.14252606370394161741627106541, 6.05461984475999528184383191792, 6.99509693743342865015461071128, 7.909067424080073954303005310281, 8.399997676157438479567152903418, 9.310468318302112658863737197982

Graph of the $Z$-function along the critical line