Properties

Label 2-1690-1.1-c1-0-29
Degree $2$
Conductor $1690$
Sign $1$
Analytic cond. $13.4947$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.80·3-s + 4-s − 5-s + 1.80·6-s + 1.55·7-s + 8-s + 0.246·9-s − 10-s + 4.49·11-s + 1.80·12-s + 1.55·14-s − 1.80·15-s + 16-s + 0.396·17-s + 0.246·18-s + 5.60·19-s − 20-s + 2.80·21-s + 4.49·22-s − 3.02·23-s + 1.80·24-s + 25-s − 4.96·27-s + 1.55·28-s − 0.692·29-s − 1.80·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.04·3-s + 0.5·4-s − 0.447·5-s + 0.735·6-s + 0.587·7-s + 0.353·8-s + 0.0823·9-s − 0.316·10-s + 1.35·11-s + 0.520·12-s + 0.415·14-s − 0.465·15-s + 0.250·16-s + 0.0960·17-s + 0.0582·18-s + 1.28·19-s − 0.223·20-s + 0.611·21-s + 0.958·22-s − 0.631·23-s + 0.367·24-s + 0.200·25-s − 0.954·27-s + 0.293·28-s − 0.128·29-s − 0.328·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1690\)    =    \(2 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(13.4947\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1690,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.998409489\)
\(L(\frac12)\) \(\approx\) \(3.998409489\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 1.80T + 3T^{2} \)
7 \( 1 - 1.55T + 7T^{2} \)
11 \( 1 - 4.49T + 11T^{2} \)
17 \( 1 - 0.396T + 17T^{2} \)
19 \( 1 - 5.60T + 19T^{2} \)
23 \( 1 + 3.02T + 23T^{2} \)
29 \( 1 + 0.692T + 29T^{2} \)
31 \( 1 + 6.59T + 31T^{2} \)
37 \( 1 - 8.98T + 37T^{2} \)
41 \( 1 + 8.64T + 41T^{2} \)
43 \( 1 + 1.46T + 43T^{2} \)
47 \( 1 - 12.4T + 47T^{2} \)
53 \( 1 - 5.16T + 53T^{2} \)
59 \( 1 - 14.0T + 59T^{2} \)
61 \( 1 + 7.37T + 61T^{2} \)
67 \( 1 + 3.52T + 67T^{2} \)
71 \( 1 - 10.8T + 71T^{2} \)
73 \( 1 + 14.3T + 73T^{2} \)
79 \( 1 - 10.3T + 79T^{2} \)
83 \( 1 - 1.75T + 83T^{2} \)
89 \( 1 + 11.3T + 89T^{2} \)
97 \( 1 + 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.206497404696522669141434308980, −8.522829009126557651570898233483, −7.70551467436129897667556418565, −7.12901960520489470043554174932, −6.03835107906681598557139559882, −5.15224526395693741442630248132, −4.02081081748644455204168454417, −3.58098210426428750546793738559, −2.51086520907272310229947028537, −1.38745036199403364858840985303, 1.38745036199403364858840985303, 2.51086520907272310229947028537, 3.58098210426428750546793738559, 4.02081081748644455204168454417, 5.15224526395693741442630248132, 6.03835107906681598557139559882, 7.12901960520489470043554174932, 7.70551467436129897667556418565, 8.522829009126557651570898233483, 9.206497404696522669141434308980

Graph of the $Z$-function along the critical line