# Properties

 Label 2-1680-5.4-c1-0-17 Degree $2$ Conductor $1680$ Sign $1$ Analytic cond. $13.4148$ Root an. cond. $3.66263$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 − i·3-s + 2.23·5-s − i·7-s − 9-s + 2·11-s + 4.47i·13-s − 2.23i·15-s + 6.47i·17-s + 2·19-s − 21-s + 4i·23-s + 5.00·25-s + i·27-s + 8.47·29-s + 0.472·31-s + ⋯
 L(s)  = 1 − 0.577i·3-s + 0.999·5-s − 0.377i·7-s − 0.333·9-s + 0.603·11-s + 1.24i·13-s − 0.577i·15-s + 1.56i·17-s + 0.458·19-s − 0.218·21-s + 0.834i·23-s + 1.00·25-s + 0.192i·27-s + 1.57·29-s + 0.0847·31-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1680$$    =    $$2^{4} \cdot 3 \cdot 5 \cdot 7$$ Sign: $1$ Analytic conductor: $$13.4148$$ Root analytic conductor: $$3.66263$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{1680} (1009, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1680,\ (\ :1/2),\ 1)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$2.166450287$$ $$L(\frac12)$$ $$\approx$$ $$2.166450287$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 + iT$$
5 $$1 - 2.23T$$
7 $$1 + iT$$
good11 $$1 - 2T + 11T^{2}$$
13 $$1 - 4.47iT - 13T^{2}$$
17 $$1 - 6.47iT - 17T^{2}$$
19 $$1 - 2T + 19T^{2}$$
23 $$1 - 4iT - 23T^{2}$$
29 $$1 - 8.47T + 29T^{2}$$
31 $$1 - 0.472T + 31T^{2}$$
37 $$1 - 2.47iT - 37T^{2}$$
41 $$1 + 3.52T + 41T^{2}$$
43 $$1 + 2.47iT - 43T^{2}$$
47 $$1 + 6.47iT - 47T^{2}$$
53 $$1 + 2iT - 53T^{2}$$
59 $$1 + 59T^{2}$$
61 $$1 + 3.52T + 61T^{2}$$
67 $$1 + 1.52iT - 67T^{2}$$
71 $$1 + 12.4T + 71T^{2}$$
73 $$1 + 7.52iT - 73T^{2}$$
79 $$1 - 8.94T + 79T^{2}$$
83 $$1 + 4.94iT - 83T^{2}$$
89 $$1 - 17.4T + 89T^{2}$$
97 $$1 - 3.52iT - 97T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$