Properties

Label 2-1680-1.1-c3-0-54
Degree $2$
Conductor $1680$
Sign $-1$
Analytic cond. $99.1232$
Root an. cond. $9.95606$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5·5-s + 7·7-s + 9·9-s + 2.93·11-s − 19.0·13-s − 15·15-s + 122.·17-s − 107.·19-s − 21·21-s − 210.·23-s + 25·25-s − 27·27-s + 95.4·29-s + 94.3·31-s − 8.81·33-s + 35·35-s + 97.1·37-s + 57.1·39-s − 491.·41-s + 43.0·43-s + 45·45-s − 473.·47-s + 49·49-s − 367.·51-s − 183.·53-s + 14.6·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.377·7-s + 0.333·9-s + 0.0805·11-s − 0.406·13-s − 0.258·15-s + 1.74·17-s − 1.29·19-s − 0.218·21-s − 1.90·23-s + 0.200·25-s − 0.192·27-s + 0.611·29-s + 0.546·31-s − 0.0464·33-s + 0.169·35-s + 0.431·37-s + 0.234·39-s − 1.87·41-s + 0.152·43-s + 0.149·45-s − 1.46·47-s + 0.142·49-s − 1.00·51-s − 0.476·53-s + 0.0360·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1680\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(99.1232\)
Root analytic conductor: \(9.95606\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1680,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 - 5T \)
7 \( 1 - 7T \)
good11 \( 1 - 2.93T + 1.33e3T^{2} \)
13 \( 1 + 19.0T + 2.19e3T^{2} \)
17 \( 1 - 122.T + 4.91e3T^{2} \)
19 \( 1 + 107.T + 6.85e3T^{2} \)
23 \( 1 + 210.T + 1.21e4T^{2} \)
29 \( 1 - 95.4T + 2.43e4T^{2} \)
31 \( 1 - 94.3T + 2.97e4T^{2} \)
37 \( 1 - 97.1T + 5.06e4T^{2} \)
41 \( 1 + 491.T + 6.89e4T^{2} \)
43 \( 1 - 43.0T + 7.95e4T^{2} \)
47 \( 1 + 473.T + 1.03e5T^{2} \)
53 \( 1 + 183.T + 1.48e5T^{2} \)
59 \( 1 - 760.T + 2.05e5T^{2} \)
61 \( 1 + 198.T + 2.26e5T^{2} \)
67 \( 1 - 309.T + 3.00e5T^{2} \)
71 \( 1 + 665.T + 3.57e5T^{2} \)
73 \( 1 - 621.T + 3.89e5T^{2} \)
79 \( 1 - 24.7T + 4.93e5T^{2} \)
83 \( 1 - 406.T + 5.71e5T^{2} \)
89 \( 1 - 261.T + 7.04e5T^{2} \)
97 \( 1 + 1.00e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.365873331690865021355234294023, −7.965628669218771443711135700562, −6.82254018549056952184892875912, −6.13295442324356444696925055783, −5.37020213120630974111840141763, −4.56279232557202726139426967714, −3.56151909403718124243672165284, −2.26767437987736129067043877648, −1.31435524573579029096390567214, 0, 1.31435524573579029096390567214, 2.26767437987736129067043877648, 3.56151909403718124243672165284, 4.56279232557202726139426967714, 5.37020213120630974111840141763, 6.13295442324356444696925055783, 6.82254018549056952184892875912, 7.965628669218771443711135700562, 8.365873331690865021355234294023

Graph of the $Z$-function along the critical line