L(s) = 1 | − 3·3-s + 5·5-s + 7·7-s + 9·9-s + 2.93·11-s − 19.0·13-s − 15·15-s + 122.·17-s − 107.·19-s − 21·21-s − 210.·23-s + 25·25-s − 27·27-s + 95.4·29-s + 94.3·31-s − 8.81·33-s + 35·35-s + 97.1·37-s + 57.1·39-s − 491.·41-s + 43.0·43-s + 45·45-s − 473.·47-s + 49·49-s − 367.·51-s − 183.·53-s + 14.6·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.377·7-s + 0.333·9-s + 0.0805·11-s − 0.406·13-s − 0.258·15-s + 1.74·17-s − 1.29·19-s − 0.218·21-s − 1.90·23-s + 0.200·25-s − 0.192·27-s + 0.611·29-s + 0.546·31-s − 0.0464·33-s + 0.169·35-s + 0.431·37-s + 0.234·39-s − 1.87·41-s + 0.152·43-s + 0.149·45-s − 1.46·47-s + 0.142·49-s − 1.00·51-s − 0.476·53-s + 0.0360·55-s + ⋯ |
Λ(s)=(=(1680s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1680s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 5 | 1−5T |
| 7 | 1−7T |
good | 11 | 1−2.93T+1.33e3T2 |
| 13 | 1+19.0T+2.19e3T2 |
| 17 | 1−122.T+4.91e3T2 |
| 19 | 1+107.T+6.85e3T2 |
| 23 | 1+210.T+1.21e4T2 |
| 29 | 1−95.4T+2.43e4T2 |
| 31 | 1−94.3T+2.97e4T2 |
| 37 | 1−97.1T+5.06e4T2 |
| 41 | 1+491.T+6.89e4T2 |
| 43 | 1−43.0T+7.95e4T2 |
| 47 | 1+473.T+1.03e5T2 |
| 53 | 1+183.T+1.48e5T2 |
| 59 | 1−760.T+2.05e5T2 |
| 61 | 1+198.T+2.26e5T2 |
| 67 | 1−309.T+3.00e5T2 |
| 71 | 1+665.T+3.57e5T2 |
| 73 | 1−621.T+3.89e5T2 |
| 79 | 1−24.7T+4.93e5T2 |
| 83 | 1−406.T+5.71e5T2 |
| 89 | 1−261.T+7.04e5T2 |
| 97 | 1+1.00e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.365873331690865021355234294023, −7.965628669218771443711135700562, −6.82254018549056952184892875912, −6.13295442324356444696925055783, −5.37020213120630974111840141763, −4.56279232557202726139426967714, −3.56151909403718124243672165284, −2.26767437987736129067043877648, −1.31435524573579029096390567214, 0,
1.31435524573579029096390567214, 2.26767437987736129067043877648, 3.56151909403718124243672165284, 4.56279232557202726139426967714, 5.37020213120630974111840141763, 6.13295442324356444696925055783, 6.82254018549056952184892875912, 7.965628669218771443711135700562, 8.365873331690865021355234294023