L(s) = 1 | + (1.07 + 0.917i)2-s + (−0.0574 + 1.73i)3-s + (0.317 + 1.97i)4-s + (0.461 + 0.266i)5-s + (−1.64 + 1.81i)6-s + (0.489 − 2.60i)7-s + (−1.46 + 2.41i)8-s + (−2.99 − 0.198i)9-s + (0.252 + 0.710i)10-s + (−2.28 − 3.96i)11-s + (−3.43 + 0.435i)12-s + 4.97·13-s + (2.91 − 2.35i)14-s + (−0.487 + 0.783i)15-s + (−3.79 + 1.25i)16-s + (2.16 + 3.74i)17-s + ⋯ |
L(s) = 1 | + (0.761 + 0.648i)2-s + (−0.0331 + 0.999i)3-s + (0.158 + 0.987i)4-s + (0.206 + 0.119i)5-s + (−0.673 + 0.739i)6-s + (0.184 − 0.982i)7-s + (−0.519 + 0.854i)8-s + (−0.997 − 0.0663i)9-s + (0.0798 + 0.224i)10-s + (−0.689 − 1.19i)11-s + (−0.992 + 0.125i)12-s + 1.38·13-s + (0.778 − 0.628i)14-s + (−0.125 + 0.202i)15-s + (−0.949 + 0.313i)16-s + (0.524 + 0.907i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.154 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.154 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07664 + 1.25770i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07664 + 1.25770i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.07 - 0.917i)T \) |
| 3 | \( 1 + (0.0574 - 1.73i)T \) |
| 7 | \( 1 + (-0.489 + 2.60i)T \) |
good | 5 | \( 1 + (-0.461 - 0.266i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.28 + 3.96i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.97T + 13T^{2} \) |
| 17 | \( 1 + (-2.16 - 3.74i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.921 - 1.59i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.103 + 0.0596i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.74T + 29T^{2} \) |
| 31 | \( 1 + (1.93 - 1.11i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (7.02 + 4.05i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.60T + 41T^{2} \) |
| 43 | \( 1 - 1.87iT - 43T^{2} \) |
| 47 | \( 1 + (-2.91 + 5.04i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.29 - 3.97i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.71 - 3.29i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.07 - 1.86i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (10.4 - 6.05i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.20iT - 71T^{2} \) |
| 73 | \( 1 + (-8.35 + 4.82i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.0228 - 0.0396i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.86iT - 83T^{2} \) |
| 89 | \( 1 + (8.23 - 14.2i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 7.18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.62893009069681358704542395965, −12.13962141148738200145995752897, −10.85888865933908091922407801962, −10.44805519656785970648875612779, −8.667189834511790552293927383610, −8.037362741598641283048095552914, −6.36367044823122065970557569331, −5.54100643170657471559029363189, −4.14939917035060803925685780030, −3.29736191654829264380649068222,
1.71407151699329298752400282239, 2.97028377650107347997880534057, 4.96812585601088954868736165919, 5.88595628478146647846752194026, 7.02943276274255629211876095094, 8.451731252455355338231100529604, 9.586528964309799800252825392667, 10.89110380570261216381292345787, 11.85875857686233172318954170528, 12.48858267911812478132648830213