L(s) = 1 | + (−0.174 − 1.40i)2-s + (1.09 + 1.34i)3-s + (−1.93 + 0.489i)4-s + (2.46 + 1.42i)5-s + (1.69 − 1.76i)6-s + (−1.02 + 2.44i)7-s + (1.02 + 2.63i)8-s + (−0.614 + 2.93i)9-s + (1.57 − 3.71i)10-s + (−2.42 − 4.20i)11-s + (−2.77 − 2.07i)12-s + 2.75·13-s + (3.60 + 1.00i)14-s + (0.780 + 4.87i)15-s + (3.52 − 1.89i)16-s + (−1.75 − 3.03i)17-s + ⋯ |
L(s) = 1 | + (−0.123 − 0.992i)2-s + (0.630 + 0.776i)3-s + (−0.969 + 0.244i)4-s + (1.10 + 0.637i)5-s + (0.692 − 0.721i)6-s + (−0.385 + 0.922i)7-s + (0.362 + 0.931i)8-s + (−0.204 + 0.978i)9-s + (0.496 − 1.17i)10-s + (−0.731 − 1.26i)11-s + (−0.801 − 0.598i)12-s + 0.763·13-s + (0.963 + 0.268i)14-s + (0.201 + 1.25i)15-s + (0.880 − 0.474i)16-s + (−0.425 − 0.736i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00700i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.00700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30798 + 0.00458005i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30798 + 0.00458005i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.174 + 1.40i)T \) |
| 3 | \( 1 + (-1.09 - 1.34i)T \) |
| 7 | \( 1 + (1.02 - 2.44i)T \) |
good | 5 | \( 1 + (-2.46 - 1.42i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.42 + 4.20i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.75T + 13T^{2} \) |
| 17 | \( 1 + (1.75 + 3.03i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.14 + 5.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.15 + 1.82i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.90T + 29T^{2} \) |
| 31 | \( 1 + (0.858 - 0.495i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.06 - 0.614i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.10T + 41T^{2} \) |
| 43 | \( 1 - 5.11iT - 43T^{2} \) |
| 47 | \( 1 + (5.61 - 9.72i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.00 + 1.73i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.890 - 0.514i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.24 + 2.15i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.02 + 2.90i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 9.75iT - 71T^{2} \) |
| 73 | \( 1 + (-0.291 + 0.168i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.80 - 4.85i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 0.138iT - 83T^{2} \) |
| 89 | \( 1 + (0.580 - 1.00i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 11.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03464341573997116709456292646, −11.41616560348109131263861017435, −10.77103196358853908858373859188, −9.751854858263090076152424851972, −9.105277010721157580297198799791, −8.191503434074307025402371796279, −6.08865146935374269864767448676, −4.98607615844171756632715325076, −3.13829409214304153619179623152, −2.52132755699143949528029524624,
1.57900902465625109773334741940, 3.95284831067853628560032509104, 5.54480241260678838011553556026, 6.55911158969156425161108099610, 7.58108965671230040690927359613, 8.482526064608429783630863263506, 9.658529845256531023518966744484, 10.19983566971043299989533481369, 12.42263731563898376072620063718, 13.17370495002451205857101203119