L(s) = 1 | + (−0.368 + 1.36i)2-s + (−1.26 − 1.18i)3-s + (−1.72 − 1.00i)4-s + (1.54 + 0.894i)5-s + (2.08 − 1.29i)6-s + (2.63 + 0.230i)7-s + (2.00 − 1.99i)8-s + (0.206 + 2.99i)9-s + (−1.79 + 1.78i)10-s + (0.501 + 0.868i)11-s + (1.00 + 3.31i)12-s + 2.47·13-s + (−1.28 + 3.51i)14-s + (−0.904 − 2.96i)15-s + (1.97 + 3.47i)16-s + (3.32 + 5.76i)17-s + ⋯ |
L(s) = 1 | + (−0.260 + 0.965i)2-s + (−0.730 − 0.682i)3-s + (−0.864 − 0.502i)4-s + (0.692 + 0.399i)5-s + (0.849 − 0.528i)6-s + (0.996 + 0.0869i)7-s + (0.710 − 0.703i)8-s + (0.0686 + 0.997i)9-s + (−0.566 + 0.564i)10-s + (0.151 + 0.261i)11-s + (0.288 + 0.957i)12-s + 0.685·13-s + (−0.343 + 0.939i)14-s + (−0.233 − 0.765i)15-s + (0.494 + 0.869i)16-s + (0.807 + 1.39i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.650 - 0.759i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.650 - 0.759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.845902 + 0.389384i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.845902 + 0.389384i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.368 - 1.36i)T \) |
| 3 | \( 1 + (1.26 + 1.18i)T \) |
| 7 | \( 1 + (-2.63 - 0.230i)T \) |
good | 5 | \( 1 + (-1.54 - 0.894i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.501 - 0.868i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.47T + 13T^{2} \) |
| 17 | \( 1 + (-3.32 - 5.76i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.85 + 3.22i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.85 + 3.95i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 0.748T + 29T^{2} \) |
| 31 | \( 1 + (-2.87 + 1.65i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.22 + 1.86i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.01T + 41T^{2} \) |
| 43 | \( 1 - 9.19iT - 43T^{2} \) |
| 47 | \( 1 + (1.19 - 2.07i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.33 + 10.9i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (7.34 - 4.24i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.02 - 3.50i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.89 - 3.98i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.46iT - 71T^{2} \) |
| 73 | \( 1 + (5.68 - 3.28i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.53 + 4.39i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 5.65iT - 83T^{2} \) |
| 89 | \( 1 + (-7.39 + 12.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.75iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.13729057235427291174042218296, −12.00476121270336926694625014657, −10.77375963711578589155068673092, −10.00877531347115593558810681920, −8.447847576626659248205386013366, −7.71434399557879466739818334485, −6.40239096748176418390966532564, −5.82168197705163954869434291099, −4.53545579427287860850171755716, −1.63153078033791186569497763837,
1.40289546809316607456639871687, 3.57672627795837465257541343926, 4.91258667785655471552357243651, 5.74377701130514924892732715223, 7.76182442089430710756422499885, 8.998059161906758038909580213466, 9.827981081630063117698598092245, 10.65415931518280662764307726058, 11.71665966016874313801215584247, 12.11776652572312104226203195179