L(s) = 1 | + (0.0857 + 1.41i)2-s + (1.69 + 0.366i)3-s + (−1.98 + 0.242i)4-s + (2.66 + 1.54i)5-s + (−0.372 + 2.42i)6-s + (−1.46 − 2.20i)7-s + (−0.511 − 2.78i)8-s + (2.73 + 1.24i)9-s + (−1.94 + 3.89i)10-s + (−0.621 − 1.07i)11-s + (−3.44 − 0.318i)12-s − 5.98·13-s + (2.98 − 2.25i)14-s + (3.95 + 3.58i)15-s + (3.88 − 0.960i)16-s + (0.595 + 1.03i)17-s + ⋯ |
L(s) = 1 | + (0.0606 + 0.998i)2-s + (0.977 + 0.211i)3-s + (−0.992 + 0.121i)4-s + (1.19 + 0.688i)5-s + (−0.152 + 0.988i)6-s + (−0.552 − 0.833i)7-s + (−0.180 − 0.983i)8-s + (0.910 + 0.414i)9-s + (−0.615 + 1.23i)10-s + (−0.187 − 0.324i)11-s + (−0.995 − 0.0920i)12-s − 1.66·13-s + (0.798 − 0.602i)14-s + (1.02 + 0.926i)15-s + (0.970 − 0.240i)16-s + (0.144 + 0.250i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0957 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0957 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13790 + 1.03366i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13790 + 1.03366i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0857 - 1.41i)T \) |
| 3 | \( 1 + (-1.69 - 0.366i)T \) |
| 7 | \( 1 + (1.46 + 2.20i)T \) |
good | 5 | \( 1 + (-2.66 - 1.54i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.621 + 1.07i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.98T + 13T^{2} \) |
| 17 | \( 1 + (-0.595 - 1.03i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.614 + 1.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.56 + 1.48i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.19T + 29T^{2} \) |
| 31 | \( 1 + (-1.33 + 0.773i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.334 + 0.193i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9.44T + 41T^{2} \) |
| 43 | \( 1 + 8.29iT - 43T^{2} \) |
| 47 | \( 1 + (-3.34 + 5.78i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.25 - 9.09i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.22 - 1.86i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.16 + 5.48i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (10.7 - 6.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.21iT - 71T^{2} \) |
| 73 | \( 1 + (8.92 - 5.15i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.41 - 11.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 5.22iT - 83T^{2} \) |
| 89 | \( 1 + (6.94 - 12.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 17.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.48121572414361865245712883692, −12.59904419237282548141913315532, −10.34839354503403884414710988285, −9.919212152265186950404794782491, −9.016769800950299651740556021534, −7.59121981069069050082670022589, −6.93996238044928832168874163511, −5.65703079679624852336279359824, −4.17430984920452054806581695253, −2.67825410238353480102841831450,
1.92604965758628772659653896428, 2.85720545392912396130966329342, 4.66693758864834600289615720872, 5.83199516111567949942628110754, 7.66147835900374497053093603161, 8.993503056162948148264820729290, 9.564077373432417894210749854087, 10.09465571923622014919948980214, 11.97008737398970704778166157662, 12.67430146798281752823836461251